2. Integers

Evaluation of Arithmetic Expressions, Associativity and Precedence, Arithmetic Operators, Domain of Types int, unsigned int

Example: power8.cpp

```cpp
int a; // Input
int r; // Result

std::cout << "Compute a^8 for a = ?";
std::cin >> a;

r = a * a; // r = a^2
r = r * r; // r = a^4

std::cout << "a^8 = " << r*r << '\n';
```

Terminology: L-Values and R-Values

L-Wert ("Left of the assignment operator")
- Expression identifying a memory location
- For example a variable
 (we’ll see other L-values later in the course)
- Value is the content at the memory location according to the type of the expression.
- L-Value can change its value (e.g. via assignment)

R-Wert ("Right of the assignment operator")
- Expression that is no L-value
- Example: integer literal 0
- Any L-Value can be used as R-Value (but not the other way round)
 ...
- ... by using the value of the L-value
 (e.g. the L-value a could have the value 2, which is then used as an R-value)
- An R-Value cannot change its value
L-Values and R-Values

std::cout << "Compute a^8 for a = ? ";
int a;
std::cin >> a;
int r = a * a; // r = a^2
r = r * r; // r = a^4
std::cout << a << '^' << 8 << " = " << r * r << ".
return 0;

R-Value (expression + address)
L-value (expression + address)
R-Value
R-Value (expression that is not an L-value)

Celsius to Fahrenheit

// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>

int main() {
 // Input
 std::cout << "Temperature in degrees Celsius = ? ";
 int celsius;
 std::cin >> celsius;

 // Computation and output
 std::cout << celsius << " degrees Celsius are "
 << 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
 return 0;
}

9 * celsius / 5 + 32

- Arithmetic expression,
- contains three literals, a variable, three operator symbols

How to put the expression in parentheses?

Rule 1: precedence

Multiplicative operators (*, /, %) have a higher precedence ("bind more strongly") than additive operators (+, -)
Associativity

Rule 2: Associativity

Arithmetic operators (*, /, %, +, -) are left associative: operators of same precedence evaluate from left to right.

\[
9 \times \text{celsius} / 5 + 32 \quad \Rightarrow \quad ((9 \times \text{celsius}) / 5) + 32
\]

Arity

Rule 3: Arity

Unary operators +, − first, then binary operators +, −.

\[-3 - 4 \quad \Rightarrow \quad (-3) - 4\]

Parentheses

Any expression can be put in parentheses by means of
- associativities
- precedences
- arities (number of operands)

of the operands in an unambiguous way (Details in the lecture notes).

Expression Trees

Parentheses yield the expression tree

\[
(((9 \times \text{celsius}) / 5) + 32)
\]
Evaluation Order

"From top to bottom" in the expression tree

Evaluation Order

Order is not determined uniquely:

Expression Trees – Notation

Common notation: root on top

Evaluation Order – more formally

- Valid order: any node is evaluated after its children
- In C++, the valid order to be used is not defined.
- "Good expression": any valid evaluation order leads to the same result.
- Example for a "bad expression": a*(a=2)
Guideline

Avoid modifying variables that are used in the same expression more than once.

Evaluation order

Arithmetic operations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Arity</th>
<th>Precedence</th>
<th>Associativity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unary +</td>
<td>+</td>
<td>1</td>
<td>16 right</td>
</tr>
<tr>
<td>Negation</td>
<td>-</td>
<td>1</td>
<td>16 right</td>
</tr>
<tr>
<td>Multiplication</td>
<td>*</td>
<td>2</td>
<td>14 left</td>
</tr>
<tr>
<td>Division</td>
<td>/</td>
<td>2</td>
<td>14 left</td>
</tr>
<tr>
<td>Modulo</td>
<td>%</td>
<td>2</td>
<td>14 links</td>
</tr>
<tr>
<td>Addition</td>
<td>+</td>
<td>2</td>
<td>13 left</td>
</tr>
<tr>
<td>Subtraction</td>
<td>-</td>
<td>2</td>
<td>13 left</td>
</tr>
</tbody>
</table>

All operators: [R-value ×] R-value → R-value

Interlude: Assignment expression – in more detail

- Already known: `a = b` means Assignment of `b` (R-value) to `a` (L-value). Returns: L-value
- What does `a = b = c` mean?
- Answer: assignment is right-associative

```
a = b = c  ↔  a = (b = c)
```

Example multiple assignment:
```
a = b = 0  ⇒  b=0; a=0
```

Division

- Operator `/` implements integer division

```
5 / 2 has value 2
```

In `fahrenheit.cpp`
```
9 * celsius / 5 + 32
```

15 degrees Celsius are 59 degrees Fahrenheit

- Mathematically equivalent… but not in C++!

```
9 / 5 * celsius + 32
```

15 degrees Celsius are 47 degrees Fahrenheit
Loss of Precision

Guideline
- Watch out for potential loss of precision
- Postpone operations with potential loss of precision to avoid “error escalation”

Division and Modulo
- Modulo-operator computes the rest of the integer division

 \[\frac{5}{2} \text{ has value 2, } \quad 5 \mod{2} \text{ has value 1.} \]

- It holds that:

 \[\left(\frac{a}{b} \right) \times b + a \mod{b} \text{ has the value of } a. \]

- From the above one can conclude the results of division and modulo with negative numbers

Increment and decrement
- Increment / Decrement a number by one is a frequent operation
- works like this for an L-value:

\[
expr = expr + 1.
\]

Disadvantages
- relatively long
- \(expr \) is evaluated twice
 - Later: L-valued expressions whose evaluation is “expensive”
 - \(expr \) could have an effect (but should not, cf. guideline)

In-/Decrement Operators
- Post-Increment
 \[
 expr++
 \]
 Value of \(expr \) is increased by one, the old value of \(expr \) is returned (as R-value)

- Pre-increment
 \[
 ++expr
 \]
 Value of \(expr \) is increased by one, the new value of \(expr \) is returned (as L-value)

- Post-Dekrement
 \[
 expr--
 \]
 Value of \(expr \) is decreased by one, the old value of \(expr \) is returned (as R-value)

- Prä-Dekrement
 \[
 --expr
 \]
 Value of \(expr \) is decreased by one, the new value of \(expr \) is returned (as L-value)
In-/decrement Operators

<table>
<thead>
<tr>
<th>use</th>
<th>arity</th>
<th>prec</th>
<th>assoz</th>
<th>L-R-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-increment</td>
<td>expr++</td>
<td>1</td>
<td>17</td>
<td>left L-value → R-value</td>
</tr>
<tr>
<td>Pre-increment</td>
<td>++expr</td>
<td>1</td>
<td>16</td>
<td>right L-value → L-value</td>
</tr>
<tr>
<td>Post-decrement</td>
<td>expr--</td>
<td>1</td>
<td>17</td>
<td>left L-value → R-value</td>
</tr>
<tr>
<td>Pre-decrement</td>
<td>--expr</td>
<td>1</td>
<td>16</td>
<td>right L-value → L-value</td>
</tr>
</tbody>
</table>

Example

```cpp
int a = 7;
std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n"; // 8
std::cout << a << "\n"; // 9
```

In-/Decrement Operators

Is the expression `++expr;` ← we favour this equivalent to `expr++;`?

Yes, but

- Pre-increment can be more efficient (old value does not need to be saved)
- Post In-/Decrement are the only left-associative unary operators (not very intuitive)

Arithmetic Assignments

\[
\text{a += b} \quad \leftrightarrow \quad \text{a = a + b}
\]

analogously for -, *, / and %
Arithmetic Assignments

<table>
<thead>
<tr>
<th>Gebrauch</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>+= expr1 += expr2</td>
<td>expr1 = expr1 + expr2</td>
</tr>
<tr>
<td>-= expr1 -= expr2</td>
<td>expr1 = expr1 - expr2</td>
</tr>
<tr>
<td>*= expr1 *= expr2</td>
<td>expr1 = expr1 * expr2</td>
</tr>
<tr>
<td>/= expr1 /= expr2</td>
<td>expr1 = expr1 / expr2</td>
</tr>
<tr>
<td>%= expr1 %= expr2</td>
<td>expr1 = expr1 % expr2</td>
</tr>
</tbody>
</table>

Arithmetic expressions evaluate expr1 only once. Assignments have precedence 4 and are right-associative.

Binary Number Representations

Binary representation (Bits from \{0, 1\})

\[b_nb_{n-1}\ldots b_1b_0\]

corresponds to the number

\[b_n \cdot 2^n + \ldots + b_1 \cdot 2 + b_0\]

Example: 101011 corresponds to 43.

Least Significant Bit (LSB)

Most Significant Bit (MSB)

Computing Tricks

- Estimate the orders of magnitude of powers of two:\(^2\):

 \[2^{10} = 1024 = 1\text{Ki} \approx 10^3,\]
 \[2^{20} = 1\text{Mi} \approx 10^6,\]
 \[2^{30} = 1\text{Gi} \approx 10^9,\]
 \[2^{32} = 4 \cdot (1024)^3 = 4\text{Gi},\]
 \[2^{64} = 16\text{Ei} \approx 16 \cdot 10^{18}.\]

Hexadecimal Numbers

Numbers with base 16

\[h_nh_{n-1}\ldots h_1h_0\]

corresponds to the number

\[h_n \cdot 16^n + \ldots + h_1 \cdot 16 + h_0.\]

notation in C++: prefix 0x

Example: 0xff corresponds to 255.

\(^2\)Decimal vs. binary units: MB - Megabyte vs. MiB - Megabyte (etc.)

kilo (K, Ki) – mega (M, Mi) – giga (G, Gi) – tera (T, Ti) – peta (P, Pi) – exa (E, Ei)

<table>
<thead>
<tr>
<th>Hex Nibbles</th>
<th>hex</th>
<th>bin</th>
<th>dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>1010</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>1011</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1100</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>1101</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1110</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>1111</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Why Hexadecimal Numbers?

- A Hex-Nibble requires exactly 4 bits. Numbers 1, 2, 4, and 8 represent bits 0, 1, 2, and 3.
- "compact representation of binary numbers"

Example: Hex-Colors

```
#00FF00
```

r g b

Domain of Type `int`

```
// Output the smallest and the largest value of type int.
#include <iostream>
#include <limits>

int main() {
    std::cout << "Minimum int value is "
    << std::numeric_limits<int>::min() << "\n"
    << "Maximum int value is "
    << std::numeric_limits<int>::max() << "\n";
    return 0;
}
```

Minimum int value is -2147483648.
Maximum int value is 2147483647.

Where do these numbers come from?

Why Hexadecimal Numbers?

“For programmers and technicians” (Excerpt of a user manual of the chess computers *Mephisto II*, 1981)
Domain of the Type int

- Representation with B bits. Domain comprises the 2^B integers:
 \[\{ -2^{B-1}, -2^{B-1} + 1, \ldots, -1, 0, 1, \ldots, 2^{B-1} - 2, 2^{B-1} - 1 \} \]
- On most platforms $B = 32$
- For the type int C++ guarantees $B \geq 16$
- Background: Section 2.2.8 (Binary Representation) in the lecture notes.

Over- and Underflow

- Arithmetic operations (+, −, *) can lead to numbers outside the valid domain.
- Results can be incorrect!

 power8.cpp: $15^8 = -1732076671$
- There is no error message!

The Type unsigned int

- Domain
 \[\{ 0, 1, \ldots, 2^B - 1 \} \]
- All arithmetic operations exist also for unsigned int.
- Literals: 1u, 17u ...

Mixed Expressions

- Operators can have operands of different type (e.g. int and unsigned int).

 \[17 + 17u \]
- Such mixed expressions are of the “more general” type unsigned int.
- int-operands are converted to unsigned int.
Conversion

<table>
<thead>
<tr>
<th>int Value</th>
<th>Sign</th>
<th>unsigned int Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>≥ 0</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>< 0</td>
<td>$x + 2^B$</td>
</tr>
</tbody>
</table>

Due to a clever representation (two’s complement – not discussed), no addition is internally needed

Conversion “reversed”

The declaration

```c
int a = 3u;
```

converts $3u$ to int.

The value is preserved because it is in the domain of int; otherwise the result depends on the implementation.

Signed Numbers

Note: the remaining slides on signed numbers, computing with binary numbers, and the two’s complement, are not relevant for the exam

Signed Number Representation

- (Hopefully) clear by now: binary number representation without sign, e.g.

 $$[b_{31}b_{30} \ldots b_0]_u = b_{31} \cdot 2^{31} + b_{30} \cdot 2^{30} + \cdots + b_0$$

- Obviously required: use a bit for the sign.

- Looking for a consistent solution

The representation with sign should coincide with the unsigned solution as much as possible. Positive numbers should arithmetically be treated equal in both systems.
Computing with Binary Numbers (4 digits)

Simple Addition

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0010</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>+0011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simple Subtraction

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0101</td>
<td>−</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>−0011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Addition with Overflow

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0111</td>
<td>+</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>+1001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>16</td>
<td>(1)0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Negative Numbers?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0101</td>
<td>+</td>
<td>(−5)</td>
</tr>
<tr>
<td></td>
<td>???</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>(1)0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simpler -1

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0001</td>
<td>+</td>
<td>(−1)</td>
</tr>
<tr>
<td></td>
<td>1111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>(1)0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Invert!

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0011</td>
<td>+</td>
<td>(−4)</td>
</tr>
<tr>
<td></td>
<td>+1100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>−1</td>
<td>1111 (\equiv 2^B - 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Utilize this:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0011</td>
<td>+</td>
<td>(−a − 1)</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>−1</td>
<td>1111 (\equiv 2^B - 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing with Binary Numbers (4 digits)

- Negation: inversion and addition of 1
 \[-a \approx \bar{a} + 1\]

- Wrap around semantics (calculating modulo 2^B
 \[-a \approx 2^B - a\]

Why this works

Modulo arithmetics: Compute on a circle\(^3\)

$11 \equiv 23 \equiv -1 \equiv \ldots \mod 12$

$4 \equiv 16 \equiv \ldots \mod 12$

$3 \equiv 15 \equiv \ldots \mod 12$

\(^3\)The arithmetics also work with decimal numbers (and for multiplication).

Negative Numbers (3 Digits)

<table>
<thead>
<tr>
<th>a</th>
<th>$-a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000 0</td>
</tr>
<tr>
<td>001</td>
<td>111 -1</td>
</tr>
<tr>
<td>010</td>
<td>110 -2</td>
</tr>
<tr>
<td>011</td>
<td>101 -3</td>
</tr>
<tr>
<td>100</td>
<td>100 -4</td>
</tr>
<tr>
<td>101</td>
<td>11</td>
</tr>
<tr>
<td>110</td>
<td>10</td>
</tr>
<tr>
<td>111</td>
<td>9</td>
</tr>
</tbody>
</table>

The most significant bit decides about the sign and it contributes to the value.

Two’s Complement

- Negation by bitwise negation and addition of 1
 \[-2 = -[0010] = [1101] + [0001] = [1110]\]

- Arithmetics of addition and subtraction identical to unsigned arithmetics
 \[3 - 2 = 3 + (-2) = [0011] + [1110] = [0001]\]

- Intuitive “wrap-around” conversion of negative numbers.
 \[-n \rightarrow 2^B - n\]

- Domain: $-2^{B-1} \ldots 2^{B-1} - 1$