7. Floating-point Numbers II

Floating-point Number Systems; IEEE Standard; Limits of Floating-point Arithmetics; Floating-point Guidelines; Harmonic Numbers

Floating-point Number Systems

A Floating-point number system is defined by the four natural numbers:

- \(\beta \geq 2 \), the base,
- \(p \geq 1 \), the precision (number of places),
- \(e_{\text{min}} \), the smallest possible exponent,
- \(e_{\text{max}} \), the largest possible exponent.

Notation:

\[
F(\beta, p, e_{\text{min}}, e_{\text{max}})
\]

Floating-point Number Systems

\(F(\beta, p, e_{\text{min}}, e_{\text{max}}) \) contains the numbers

\[
\pm \sum_{i=0}^{p-1} d_i \beta^{-i} \cdot \beta^e,
\]

\(d_i \in \{0, \ldots, \beta - 1\}, \quad e \in \{e_{\text{min}}, \ldots, e_{\text{max}}\}. \)

represented in base \(\beta \):

\[
\pm d_0 d_1 \ldots d_{p-1} \times \beta^e,
\]

Example

- \(\beta = 10 \)

Representations of the decimal number 0.1

\[
1.0 \cdot 10^{-1}, \quad 0.1 \cdot 10^{0}, \quad 0.01 \cdot 10^{1}, \quad \ldots
\]
Normalized representation

Normalized number:

\[\pm d_0 \cdot d_1 \ldots d_{p-1} \times \beta^e, \quad d_0 \neq 0 \]

Remark 1
The normalized representation is unique and therefore preferred.

Remark 2
The number 0 (and all numbers smaller than \(\beta^{e_{\text{min}}})\) have no normalized representation (we will deal with this later)!

Set of Normalized Numbers

\[F^*(\beta, p, e_{\text{min}}, e_{\text{max}}) \]

Normalized Representation

Example \(F^*(2, 3, -2, 2)\) (only positive numbers)

<table>
<thead>
<tr>
<th>(d_0 \cdot d_1 \cdot d_2)</th>
<th>(e = -2)</th>
<th>(e = -1)</th>
<th>(e = 0)</th>
<th>(e = 1)</th>
<th>(e = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00(_2)</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1.01(_2)</td>
<td>0.3125</td>
<td>0.625</td>
<td>1.25</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>1.10(_2)</td>
<td>0.375</td>
<td>0.75</td>
<td>1.5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>1.11(_2)</td>
<td>0.4375</td>
<td>0.875</td>
<td>1.75</td>
<td>3.5</td>
<td>7</td>
</tr>
</tbody>
</table>

\[1.00 \cdot 2^{-2} = \frac{1}{4} \]

\[1.11 \cdot 2^2 = 7 \]

Binary and Decimal Systems

- Internally the computer computes with \(\beta = 2\) (binary system)
- Literals and inputs have \(\beta = 10\) (decimal system)
- Inputs have to be converted!
Conversion Decimal → Binary

Assume, $0 < x < 2$.

Binary representation:

$$x = \sum_{i=-\infty}^{0} b_i 2^i = b_0 \cdot b_{-1} b_{-2} b_{-3} \ldots$$

$$= b_0 + \sum_{i=-\infty}^{-1} b_i 2^i = b_0 + \sum_{i=-\infty}^{0} b_{i-1} 2^{i-1}$$

$$= b_0 + \left(\sum_{i=-\infty}^{0} b_{i-1} 2^i \right) / 2$$

Hence:

$$x' = b_{-1} \cdot b_{-2} b_{-3} b_{-4} \ldots = 2 \cdot (x - b_0)$$

Step 1 (for x): Compute b_0:

$$b_0 = \begin{cases} 1, & \text{if } x \geq 1 \\ 0, & \text{otherwise} \end{cases}$$

Step 2 (for x): Compute b_{-1}, b_{-2}, \ldots:

Go to step 1 (for $x' = 2 \cdot (x - b_0)$)

Binary representation of 1.1

<table>
<thead>
<tr>
<th>x</th>
<th>b_i</th>
<th>$x - b_i$</th>
<th>$2(x - b_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>$b_0 = 1$</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>0.2</td>
<td>$b_{-1} = 0$</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>0.4</td>
<td>$b_{-2} = 0$</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>0.8</td>
<td>$b_{-3} = 0$</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>1.6</td>
<td>$b_{-4} = 1$</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>1.2</td>
<td>$b_{-5} = 1$</td>
<td>0.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

⇒ 1.00011, periodic, not finite

Binary Number Representations of 1.1 and 0.1

- are not finite, hence there are errors when converting into a (finite) binary floating-point system.
- $1.1f$ and $0.1f$ do not equal 1.1 and 0.1, but are slightly inaccurate approximation of these numbers.
- In `diff.cpp`: $1.1 - 1.0 \neq 0.1$
Binary Number Representations of 1.1 and 0.1

on my computer:

\[
1.1 = 1.1000000000000000888178 \ldots \\
1.1f = 1.100000238418 \ldots
\]

The Excel-2007-Bug

\[
\text{std::cout} << 850 * 77.1; // 65535
\]

- 77.1 does not have a finite binary representation, we obtain 65534.9999999999927 \ldots
- For this and exactly 11 other “rare” numbers the output (and only the output) was wrong.

Computing with Floating-point Numbers

Example (\(\beta = 2, p = 4\)):

\[
\begin{align*}
1.111 & \cdot 2^{-2} \\
+ 1.011 & \cdot 2^{-1} \\
\hline
= 1.001 & \cdot 2^0
\end{align*}
\]

1. adjust exponents by denormalizing one number 2. binary addition of the significands 3. renormalize 4. round to \(p\) significant places, if necessary

The IEEE Standard 754

- defines floating-point number systems and their rounding behavior
- is used nearly everywhere
- Single precision (\texttt{float}) numbers:

\[
F^*(2, 24, -126, 127) \quad \text{plus} \ 0, \infty, \ldots
\]

- Double precision (\texttt{double}) numbers:

\[
F^*(2, 53, -1022, 1023) \quad \text{plus} \ 0, \infty, \ldots
\]

- All arithmetic operations round the exact result to the next representable number
The IEEE Standard 754

Why $F^*(2, 24, -126, 127)$?

- 1 sign bit
- 23 bit for the significand (leading bit is 1 and is not stored)
- 8 bit for the exponent (256 possible values) (254 possible exponents, 2 special values: 0, ∞, ...)

\Rightarrow 32 bit in total.

Floating-point Rules

Rule 1

Do not test rounded floating-point numbers for equality.

```cpp
for (float i = 0.1; i != 1.0; i += 0.1)
    std::cout << i << std::endl;
```

endless loop because i never becomes exactly 1

Floating-point Rules

Rule 2

Do not add two numbers of very different orders of magnitude!

```cpp
1.000 \cdot 2^5
+ 1.000 \cdot 2^0
= 1.00001 \cdot 2^5
```

"=" 1.000 \cdot 2^5 (Rounding on 4 places)

Addition of 1 does not have any effect!
The n-th harmonic number is

$$H_n = \sum_{i=1}^{n} \frac{1}{i} \approx \ln n.$$

This sum can be computed in forward or backward direction, which is mathematically clearly equivalent.

Results:

- **Compute H_n for $n = 10000000$**
 - Forward sum = 15.4037
 - Backward sum = 16.686

- **Compute H_n for $n = 100000000$**
 - Forward sum = 15.4037
 - Backward sum = 18.8079

Observation:

- The forward sum stops growing at some point and is “really” wrong.
- The backward sum approximates H_n well.

Explanation:

- For $1 + \frac{1}{2} + \frac{1}{3} + \cdots$, later terms are too small to actually contribute.
- Problem similar to $2^5 + 1 = 2^5$.
Floating-point Guidelines

Rule 3

Do not subtract two numbers with a very similar value.

Cancellation problems, cf. lecture notes.

Rule 4

Functions

Encapsulate functionality that is frequently used (e.g. computing powers) and make it easily accessible.

Structure a program: partitioning into small sub-tasks, each of which is implemented as a function.

⇒ Procedural programming; procedure: a different word for function.

8. Functions I

Defining and Calling Functions, Evaluation of Function Calls, the Type void, Pre- and Post-Conditions
Example: Computing Powers

double a;
int n;
std::cin >> a; // Eingabe a
std::cin >> n; // Eingabe n

double result = 1.0;
if (n < 0) { // a^n = (1/a)^(-n)
 a = 1.0/a;
 n = -n;
}
for (int i = 0; i < n; ++i)
 result *= a;
std::cout << a << "^" << n << " = " << resultpow(a,n) << ".";

Function to Compute Powers

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e)
{
 double result = 1.0;
 if (e < 0) { // b^e = (1/b)^(-e)
 b = 1.0/b;
 e = -e;
 }
 for (int i = 0; i < e; ++i)
 result *= b;
 return result;
}

Function Definitions

T fname (T1 pname1, T2 pname2, ..., TN pnameN)
block
return type
argument types

// Prog: callpow.cpp
// Define and call a function for computing powers.
#include <iostream>

double pow(double b, int e){...}

int main()
{
 std::cout << pow(2.0, -2) << "\n"; // outputs 0.25
 std::cout << pow(1.5, 2) << "\n"; // outputs 2.25
 std::cout << pow(-2.0, 9) << "\n"; // outputs -512

 return 0;
}
Defining Functions

- may not occur *locally*, i.e. not in blocks, not in other functions and not within control statements
- can be written consecutively without separator in a program

```
double pow (double b, int e)
{
    ...
}
int main ()
{
    ...
}
```

Example: Xor

```
// post: returns l XOR r
bool Xor(bool l, bool r)
{
    return l && !r || !l && r;
}
```

Example: Harmonic

```
// PRE: n >= 0
// POST: returns nth harmonic number
// computed with backward sum
float Harmonic(int n)
{
    float res = 0;
    for (unsigned int i = n; i >= 1; --i)
        res += 1.0f / i;
    return res;
}
```

Example: min

```
// POST: returns the minimum of a and b
int min(int a, int b)
{
    if (a<b)
        return a;
    else
        return b;
}
```
Function Calls

.fname (expression₁, expression₂, . . . , expressionₙ)

- All call arguments must be convertible to the respective formal argument types.
- The function call is an expression of the return type of the function. Value and effect as given in the postcondition of the function fname.

Example: pow(a,n): Expression of type double

Evaluation of a Function Call

- Evaluation of the call arguments
- Initialization of the formal arguments with the resulting values
- Execution of the function body: formal arguments behave like local variables
- Execution ends with return expression;

Return value yields the value of the function call.

Example: Evaluation Function Call

double pow(double b, int e){
 assert (e >= 0 || b != 0);
 double result = 1.0;
 if (e<0) {
 // b^e = (1/b)^(-e)
 b = 1.0/b;
 e = -e;
 }
 for (int i = 0; i < e ; ++i)
 result *= b;
 return result;
}

... pow (2.0, −2)

For the types we know up to this point it holds that:
- Call arguments are R-values
- The function call is an R-value.

fname: R-value × R-value × · · · × R-value → R-value
Formal arguments

- Declarative region: function definition
- are *invisible* outside the function definition
- are allocated for each call of the function (automatic storage duration)
- modifications of their value do not have an effect to the values of the call arguments (call arguments are R-values)

Scope of Formal Arguments

double pow(double b, int e){
 double r = 1.0;
 if (e<0) {
 b = 1.0/b;
 e = −e;
 }
 for (int i = 0; i < e ; ++i)
 r * = b;
 return r;
}

int main()
{
 double b = 2.0;
 int e = −2;
 double z = pow(b, e);
 std::cout << z; // 0.25
 std::cout << b; // 2
 std::cout << e; // −2
 return 0;
}

Not the formal arguments b and e of pow but the variables defined here locally in the body of main

The type void

- Fundamental type with empty value range
- Usage as a return type for functions that do only provide an effect

// POST: "(i, j)" has been written to standard output
void print_pair(int i, int j)
{
 std::cout << "(" << i << ", " << j << ")\n";
}

int main()
{
 print_pair(3,4); // outputs (3, 4)
 return 0;
}

void-Functions

- do not require return.
- execution ends when the end of the function body is reached or if
- return; is reached
- return expression; is reached.

Expression with type void (e.g. a call of a function with return type void)
Pre- and Postconditions

- characterize (as complete as possible) what a function does
- document the function for users and programmers (we or other people)
- make programs more readable: we do not have to understand how the function works
- are ignored by the compiler
- Pre and postconditions render statements about the correctness of a program possible – provided they are correct.

Preconditions

- precondition:
 - what is required to hold when the function is called?
 - defines the domain of the function

0^e is undefined for e < 0

// PRE: e >= 0 || b != 0.0

Postconditions

- postcondition:
 - What is guaranteed to hold after the function call?
 - Specifies value and effect of the function call.

Here only value, no effect.

// POST: return value is b^e

Pre- and Postconditions

- should be correct:
 - if the precondition holds when the function is called then also the postcondition holds after the call.

Funktion pow: works for all numbers b ≠ 0
Pre- and Postconditions

- We do not make a statement about what happens if the precondition does not hold.
- **C++-standard-slang:** „Undefined behavior“.

Function pow: division by 0

Pre- and Postconditions

- pre-condition should be as *weak* as possible (largest possible domain)
- post-condition should be as *strong* as possible (most detailed information)

White Lies...

```cpp
// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
```

is formally incorrect:

- Overflow if e or b are too large
- \(b^e \) potentially not representable as a double (holes in the value range!)

White Lies are Allowed

```cpp
// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
```

The exact pre- and postconditions are platform-dependent and often complicated. We abstract away and provide the mathematical conditions. ⇒ compromise between formal correctness and lax practice.
Checking Preconditions...

- Preconditions are only comments.
- How can we ensure that they hold when the function is called?

Postconditions with Asserts

- The result of “complex” computations is often easy to check.
- Then the use of asserts for the postcondition is worthwhile.

```c
// PRE: the discriminant p\times p/4 - q is nonnegative
// POST: returns larger root of the polynomial x^2 + p x + q
double root(double p, double q)
{
    assert(p*p/4 >= q); // precondition
    double x1 = -p/2 + sqrt(p*p/4 - q);
    assert(equals(x1*x1+p*x1+q,0)); // postcondition
    return x1;
}
```

Exceptions

- Assertions are a rough tool; if an assertions fails, the program is halted in an unrecoverable way.
- C++ provides more elegant means (exceptions) in order to deal with such failures depending on the situation and potentially without halting the program.
- Failsafe programs should only halt in emergency situations and therefore should work with exceptions. For this course, however, this goes too far.