2. Logical Values

Boolean Functions; the Type bool; logical and relational operators;
shortcut evaluation

42

Boolean Values in Mathematics

Boolean expressions can take on one of two values:

Oor 1

m (O corresponds to “false”
m 7 corresponds to “true”

44

Our Goal

int a;
std::cin >> a;
if (a % 2 == 0)
std::cout << "even";
else
std::cout << "odd";

Behavior depends on the value of a Boolean expression

The Type bool in C++

m represents logical values
m Literals false and true
m Domain {false, true}

bool b = true; // Variable with value true

43

45

Relational Operators

a < b (smaller than)
a >= b (greater than)
a ==Db (equals)

a !=b (notequal)

arithmetic type x arithmetic type — bool

R-value x R-value — R-value

46

Boolean Functions in Mathematics

m Boolean function

f:{0,1}* = {0,1}

m (corresponds to “false”.
m 1 corresponds to “true”.

48

Table of Relational Operators

H Symbol ‘ Arity ‘ Precedence | Associativity

smaller < 2 11 left
greater > 2 11 left
smaller equal <= 2 11 left
greater equal >= 2 11 left
equal == 2 10 left
unequal 1= 2 10 left
arithmetic type x arithmetic type — bool
R-value x R-value — R-value
AND(z, y) T
m “logical And” T AND(z
0 0
f:{0,1} = {0,1}
01 0
[| 110 0
= 101 1

49

Logical Operator && OR(z,y)

m “logical Or” x OR(z,v)
a && b (logical and) 00102 s £0.1 0]0 0
f:{0.13 = {0.1) T
bool X bool — bool u 110 1
R-value x R-value — R-value u 1)1 1
int n = —1;
int p = 3;
bool b = (n < 0) && (0 < p); // b = true
Logical Operator | | NOT(x)
m “logical Not”
NOT
all b (logical or) f:{0,1} = {0,1} z 1(@
[1 0

bool X bool — bool

R-value x R-value — R-value

int n = 1;
int p = 0;
bool b = (n<0) || (0<p); // b= false

52

Logical Operator !

b (logical not)

bool — bool

R-value — R-value

int n = 1;
bool b= !'!(n < 0); // b = true

Table of Logical Operators

H Symbol

Arity | Precedence | Associativity
Logical and (AND) && 2 6 left
Logical or (OR) Il 2 5 left
Logical not (NOT) ! 1 16 right

Precedences

b & a

0

('b) && a

a& b || c & d

I

(a & b) || (c && d)

allb & «c |l d

]

all (b& c) |l d

Precedences

The unary logical operator !
binds more strongly than
binary arithmetic operators. These
bind more strongly than
relational operators,
and these bind more strongly than
binary logical operators.

7+x<y&&y!=3*xz || !Db
7+x<y&&y!'!'=3xz]|| (Ib)

Completeness

m AND, OR and NOT are the boolean
functions available in C+ .

m Any other binary boolean function can
be generated from them.

Completeness Proof

m |dentify binary boolean functions with their characteristic vector.

z |y | XOR(z,y)
00 0
01 1
10 1
1)1 0

—
—_

- O |0 |8
o
o

characteristic vector: 0110

XOR = fOllO

60

Completeness: XOR(z, y) TPy

XOR(z,y) = AND(OR(z,y), NOT(AND(z,y))).

r@y=(xVy A-(zAy).

Il y) & '(x & y)

Completeness Proof

m Step 1: generate the fundamental functions fooo1, foo10, fo100, f1000

y)
Jooro = AND(z NOT(?/))

(z,

(

foro0 = AND(y,NOT(x))
fi000 = NOT(OR(z,y))

fooor = AND

61

Completeness Proof

m Step 2: generate all functions by applying logical or

Ji101 = OR(f1000, OR(fo100, fooo1))

m Step 3: generate fyooo

foooo = 0.

62

DeMorgan Rules

m !(a && b)
m!(all b)

(ta || !b)
(la && 'b)

! (rich and beautiful) == (poor or ugly) |

64

bool vs int: Conversion

bool

int

®m bool can be used whenever int is expected | frue

— and vice versa.

m Many existing programs use int instead of

bool

This is bad style originating from the

language C'.

false

1
0

int

bool

£0
0

N
—
—
—
RN

%

true

false

bool b = 3; // b=true

Application: either ... or (XOR)

x Il y & ' (x && y)

Il y & (Ix || ty)

1 (1x && 'y) && '(x && y)

1(1x && 'y || x && y)

X ory, and not both

x ory, and one of them not

not none and not both

not: both or none

63

Short circuit Evaluation

m Logical operators && and | | evaluate the left operand first.
m If the result is then known, the right operand will not be evaluated.

x!1=0&& z/ x>y J

= No division by 0

66

Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior

> It's not a bug, it's a feature '« |
2. Check at many places in the code if the program is still on track!

3. Question the (seemingly) obvious, there could be a typo in the
code.

Sources of Errors

m Errors that the compiler can find:
syntactical and some semantical errors

m Errors that the compiler cannot find:
runtime errors (always semantical)

Against Runtime Errors: Assertions

assert (expr)

m halts the program if the boolean expression expr is false
m requires #include <cassert>
m can be switched off

69

DeMorgan’s Rules

Question the obvious Question the seemingly obvious!

// Prog: assertion.cpp
// use assertions to check De Morgan’s laws

#include<cassert>

int main()

{
bool x; // whatever x and y actually are,
bool y; // De Morgan’s laws will hold:
assert (!(x & y) == (!'x || 'y));
assert (!(x || y) == (!'x && 'y));
return 0;

Div-Mod Identity a/b

Check if the program is on track. ..
std::cout << "Dividend a =7 ";
int a;
std::cin >> a;

std::cout << "Divisor b =7 ";
int b;

std::cin >> b;

// check input

TV AN G E BN BPR Precondition for the ongoing computation

70

* b + a¥%b == a

Input arguments for calcula-
tion

72

Switch off Assertions

// Prog: assertion2.cpp

// use assertions to check De Morgan’s laws. To tell the
// compiler to ignore them, #define NDEBUG ("no debugging")
// at the beginning of the program, before the #includes

#define NDEBUG
#include<cassert>

int main()

{
bool x; // whatever x and y actually are,
bool y; // De Morgan’s laws will hold:

assert (!(x && y) == (!x || 'y)); // ignored by NDEBUG
assert (!(x || y) == (!'x && !'y)); // ignored by NDEBUG
return 0;

Div-Mod identity a/b x b + alb == a

...and question the obvious!
// check input

=RV AN G E BN BRR Precondition for the ongoing computation

// compute result
int div = a / b;
int mod = a % b;

// check result
assert (div * b + mod == a) ; ——EVAVIeIRls[Nii1\]

71

73

3. Control Structures |

Selection Statements, lteration Statements, Termination, Blocks

Selection Statements

implement branches

m if statement

B if-else statement

Control Flow

m up to now linear (from top to bottom)

m For interesting programs we need “branches” and “jumps’

Computation of 1 + 2 + ... + n.

Input n
i=1;8:=0 —
Output s
i f-Statement

if (condition)
statement

int a;
std::cin >> a;
if (a % 2 == 0)

std: :cout << "even";

If condition is true then state-
ment is executed

m statement. arbitrary
statement (body of the
if-Statement)

m condition: convertible to
bool

if-else-statement Layout!

if (condition) If condition is true then state-

statement1 ment1 is executed, otherwise
else statement?2 is executed. int a;

statement2 std::cin >> a;

m condition: convertible to if (a % 2 == 0)

int a; bool. std::cout << "even"; <
std::cin >> a; m statement1: body of the else
if (a % 2 == 0) if-branch std::cout << "odd"; <

std::cout << "even'";
else
std::cout << "odd";

m statement2: body of the
else-branch

lteration Statements Compute 1 +2+...+n

// Program: sum_n.cpp
// Compute the sum of the first n natural numbers.

H “ ” #include <iostream>
implement “loops
int main()
{
// input

m for-statement std::cout << "Compute the sum 1+...+n for n =? "
unsigned int n;

B while-statement std::cin >> n;

m do-statement // computation of sum {i=1}“n i

unsigned int s = 0;
for (unsigned int i = 1; i <= n; ++i) s += i;

// output
std::cout << "1l+...4+" << n << " =" << 5§ << " \n";
return 0;

80

f or-Statement Example

for (unsigned int i=1; i <= n; ++i)
s += i,

Assumptions: n == 2,8 ==
1 s
i==1 wahr s == 1
i==2 wahr s == 3
i== falsch

s == 3

f or-Statement: semantics

for (init statement condition ; expression)
Statement

m init-statement is executed
m condition is evaluated

m true: lteration starts
statement is executed
expression is executed

m false: for-statement is ended.

82

84

f or-Statement: Syntax

for (init statement condition ; expression)
Statement

m /nit-statement. expression statement, declaration statement, null
statement

m condition: convertible to bool
B expression: any expression
m statement : any statement (body of the for-statement)

GauB as a Child (1777 - 1855)

m Math-teacher wanted to keep the pupils busy with the following
task:

Compute the sum of numbers from 1 to 100 !

m Gauf finished after one minute.

The Solution of GauB

m The requested number is

I1+2+3+---+98+ 99+ 100.

m This is half of

1+ 2+ - 4+ 99 + 100
+ 100 + 99 + --- + 2 + 1
= 101 + 101 + --- + 101 + 101
m Answer: 100 - 101/2 = 5050
Infinite Loops
m Infinite loops are easy to generate:
for C ; ;) ; J

m Die empty condition is true.
m Die empty expression has no effect.
m Die null statement has no effect.
m ... but can in general not be automatically detected.

for (e; v; e) r; J

88

f or-Statement: Termination

for (unsigned int i = 1; i <= n; ++i)
s += 1ij;
Here and in most cases:

m expression changes its value that appears in condition .

m After a finite number of iterations condition becomes false:
Termination

87

Halting Problem

Undecidability of the Halting Problem

There is no C++ program that can determine for each
C+-+-Program P and each input [if the program P terminates with
the input 1.

This means that the correctness of programs can in general not be
automatically checked.’

"Alan Turing, 1936. Theoretical quesitons of this kind were the main motivation for Alan Turing to construct a computing

machine.
89

Example: Prime Number Test

Def.: a natural number n > 2 is a prime number, if no
de{2,...,n—1} divides n .

A loop that can test this:

unsigned int d;
for (d=2; n%d != 0; ++d);

m Observation 1:
After the for-statement it holds that d < n.
m Observation 2:
n is a prime number if and only if finally d = n.

90

Blocks

m Blocks group a number of statements to a new statement
{statementl statement2 ... statementN}

m Example: body of the main function

int main() {

}

m Example: loop body

for (unsigned int i = 1; i <= n; ++i) {
s += i,
std::cout << "partial sum is " << s << "\n";

}

91

