1. Integers

Evaluation of Arithmetic Expressions, Associativity and Precedence,
Arithmetic Operators, Domain of Types int, unsigned int

9 * celsius / 5 + 32

m Arithmetic expression,
m contains three literals, a variable, three operator symbols

How to put the expression in parentheses?

Celsius to Fahrenheit

// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>

int main() {
// Input
std::cout << "Temperature in degrees Celsius =7 ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 x celsius / 5 + 32 << " degrees Fahrenheit.\n";
return O;

Precedence

Multiplication/Division before Addition/Subtraction
9 x celsius / 5 + 32

bedeutet

(9 * celsius / 5) + 32

Rule 1: precedence

Multiplicative operators (*, /, %) have a higher precedence ("bind
more strongly") than additive operators (+, -)

Associativity

From left to right
9 * celsius / 5 + 32

bedeutet

((9 * celsius) / 5) + 32

Rule 2: Associativity

Arithmetic operators (x, /, %, +, =) are left associative: operators of
same precedence evaluate from left to right

Parentheses

Any expression can be put in parentheses by means of
B associativities
m precedences
m arities (number of operands)

of the operands in an unambiguous way (Details in the lecture
notes).

Arity

Rule 3: Arity

Unary operators +, - first, then binary operators +, -.
-3 -4

means

(-3) - 4

Expression Trees

Parentheses yield the expression tree

(((9 * celsius) / 5) + 32)

Evaluation Order

"From top to bottom" in the expression tree

9 % celsius / 5 + 32

Expression Trees — Notation

Common notation: root on top

9 % celsius / 5 + 32

Evaluation Order

Order is not determined uniquely:

9 % celsius / 5 + 32

Evaluation Order — more formally

m Valid order: any node is evaluated after its children

e In C+-+ , the valid order to
@ @ be used is not defined.

m "Good expression": any valid evaluation order leads to the same result.

m Example for a "bad expression": (a+b) * (a++)

Evaluation order

Avoid modifying variables that are used in the same expression
more than once.

Assignment expression - in more detail

m Already known: a = b means
Assignment of b (R-value) to a (L-value).
Returns: L-value

m Whatdoesa = b = ¢ mean?
m Answer: assignment is right-associative

a=b=c — a=(=c))

Example multiple assignment:
a=b=0=—D0b=0; a=0

Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right
Negation - 1 16 right
Multiplication * 2 14 left
Division / 2 14 left
Modulus h 2 14 links
Addition + 2 13 left
Subtraction - 2 13 left

All operators: [R-value x] R-value — R-value

Division and Modulus

m Operator / implements integer division

5 / 2 has value 2

m In fahrenheit.cpp

9 % celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

m Mathematically equivalent. .. but not in C+-+!

9 / 5 * celsius + 32

15 degrees Celsius are 47 degrees Fahrenheit

Division and Modulus

m Modulus-operator computes the rest of the integer division

5 / 2 has value 2, 5 % 2 hasvalue 1. |
m It holds that:

(a/ b) * b+ a % b hasthe value of a. |
In-/Decrement Operators
Post-Increment
expr++ J

Value of expr is increased by one, the old value of expr is returned (as R-value)

Pre-increment

++
expr)

Value of expr is increased by one, the new value of expr is returned (as L-value)

Post-Dekrement

expr-- y

Value of expr is decreased by one, the old value of expr is returned (as R-value)

Pra-Dekrement

--expr J

Value of expr is increased by one, the new value of expr is returned (as L-value)

Increment and decrement

m Increment / Decrement a number by one is a frequent operation
m works like this for an L-value:

expr = expr + 1.]

Disadvantages

m relatively long
m expr is evaluated twice (effects!)

In-/decrement Operators

use arity prec assoz L-/R-value
Post-increment expr++ 1 17 left L-value — R-value
Pre-increment ++expr 1 16 right L-value — L-value
Post-decrement expr-- 1 17 left L-value — R-value
Pre-decrement --expr 1 16 right L-value — L-value

In-/Decrement Operators

std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n"; // 8
std::cout << a << "\n"; // 9

C++vs. ++C

Strictly speaking our language should be named ++C because

m it is an advancement of the language C
m while C++ returns the old C.

21

23

In-/Decrement Operators

Is the expression

++expr; <« we favour this
equivalent to

expr++;?
Yes, but

m Pre-increment can be more efficient (old value does not need to
be saved)

m Post In-/Decrement are the only left-associative unary operators
(not very intuitive)

Arithmetic Assignments

a+=b>

a=a+b

analogously for -, *, /and?¥%

22

24

Arithmetic Assignments

Gebrauch Bedeutung

+= exprl += expr2 exprl = exprl + expr2

= exprl -= expr2 exprl = exprl - expr2

*= exprl *= expr2 exprl = exprl * expr2

/= exprl /= expr2 exprl = exprl / expr2

%= exprl %= expr2 exprl = exprl } expr2

Arithmetic expressions evaluate expr1 only once.
Assignments have precedence 4 and are right-associative.

Binary Numbers: Numbers of the Computer?

Truth: Computers calculate using binary numbers.

?@@mmﬂm S ot

Das programmgesteuerte Rechengerit
i in

an der

25

27

Binary Number Representations

Binary representation ("Bits" from {0,1})
bpbp_1...b1by
corresponds to the number b, - 2" + --- + by - 2 + by

Example: 101011 corresponds to 43.]

——

Least Significant Bit (LSB)
Most Significant Bit (MSB)

26

Binary Numbers: Numbers of the Computer?

Stereotype: computers are talking 0/1 gibberish

Voo TronotoThonow

01001110 01011010 01011010,
@i001010 o101012001001201

wenzsch - Fr 400 - €350

35,k

01000010 01100101
01110010 01101001

01100011 01101000 01110100 01100101

28

Hexadecimal Numbers Why Hexadecimal Numbers?

Numbers with base 16 m A Hex-Nibble requires exactly 4 bits. Numbers 1, 2, 4 and 8
Wh - hex | bin | dec represent bits 0, 1, 2 and 3.
1. 0 [0000| O . . i
nitn—l 1o 1| o001 | 1 m ,compact representation of binary numbers
2 0010 2
corresponds to the number 2 |owo!| a 32-bit numbers consist of eight hex-nibbles: 0x00000000 -- Oxffffffff .
5 | o101 5 0x400 = 1Ki = 1'024.
hy - 16" 4 - -+ + hy - 16 + hy. S 0x100000 = 1Mi = 1'048'576.
8 | 1000 | 8 0x40000000 = 1G7 = 1'073.741, 824.
notation in C++: prefix 0x S PO 0x80000000: highest bit of a 32-bit number is set
b | 1011 | 11 oxffffffff: all bits of a 32-bit number are set
Example: 0xf£f corresponds to 255. | S Il ,0x8a20aaf0 is an address in the upper 2G of the 32-bit address space”
|| 1s
Example: Hex-Colors Why Hexadecimal Numbers?

“For programmers and technicians” (Excerpt of a user manual of the
chess computers Mephisto I, 1981)

Beispiele

jenau 2 Bauern-Einheiten im Vorteil

J 1 Bauern-Einheit
exadezimaler Schreibwel
1 die Ziffer

Beispiele

©) Anzeige 805E
80SE (E=14) Umrechnung nach folgendem Verfahrer
(14x169) + (5x161) + (0x162) + (Ox16%) — 14-+80+0+0
= +94 Punkte
d) Anzeige 7F80
IF80 (7=-1; F=15) Umrechnung wie folgt
(0x160) + (8x161) + (15x162) - (1x162) = 0+128+3840-4096

31

.zanchetta.net/default.aspx?Categorie=ECHIQUIERS&Page=documentations

http://waw

@

Why Hexadecimal Numbers?

The NZZ could have saved a lot of space ...

b Frao0 . €350

01000010 01100101
01110010 01101001

01100011 01101000 O11.

01100110 01100101

Domain of Type int

// Program: limits.cpp
// Output the smallest and the largest value of type int.

#include <iostream>
#include <limits>

int main()
{
std::cout <<
<<
<<
<<
return O;

}

"Minimum int value is "
std: :numeric_limits<int>::min() <<
"Maximum int value is "
std: :numeric_limits<int>::max() <<

" \n"

", \nn;

For example

Minimum int
Maximum int

value is -2147483648.
value is 2147483647.

33

35

Domain of the Type int

m Representation with B bits. Domain comprises the 27 integers:
{2871 2Bl . —1,0,1,...,287 292871 1}

m On most platforms B = 32
m For the type int C++ guarantees B > 16

m Background: Section 2.2.8 (Binary Representation) in the lecture
notes.

Over- and Underflow

m Arithmetic operations (+, -, *) can lead to numbers outside the
valid domain.

m Results can be incorrect!
power8.cpp: 15% = —1732076671

power20. cpp: 32’ = —808182895

m There is no error message!

34

36

The Type unsigned int

m Domain
{0,1,...,2% -1}

m All arithmetic operations exist also for unsigned int.

m Literals: 1u, 17u...

Conversion

int Value Sign unsigned int Value

T >0 T

Using two complements representation, nothing happens in-
ternally

Mixed Expressions

m Operators can have operands of different type (e.g. int and
unsigned int).

17 + 17u

m Such mixed expressions are of the “more general” type
unsigned int.

®m int-operands are convertedto unsigned int.

Conversion “reversed”

The declaration
int a = 3u;
converts 3u to int.

The value is preserved because it is in the domain of int; otherwise
the result depends on the implementation.

40

Signed Number Representation

m (Hopefully) clear by now: binary number representation without
sign, e.g.

(31630 - - . Dol = b1 - 21 4 b3g - 2%0 4+ -+ by
m Obviously required: use a bit for the sign.

m Looking for a consistent solution

The representation with sign should coincide with the unsigned solution as
much as possible. Positive numbers should arithmetically be treated equal in
both systems.

