## Celsius to Fahrenheit

```
// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>
int main() {
    // Input
    std::cout << "Temperature in degrees Celsius =? ";
    int celsius;
    std::cin >> celsius;
    // Computation and output
    std::cout << celsius << " degrees Celsius are "
                                    << 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
    return 0;
}
```


## Precedence

Multiplication/Division before Addition/Subtraction
bedeutet

```
(9 * celsius / 5) + 32
```


## Rule 1: precedence

Multiplicative operators (*, /, \%) have a higher precedence ("bind more strongly") than additive operators (+, -)

## Associativity

```
From left to right
9 * celsius / 5 + 32
```

bedeutet
$((9 *$ celsius $) / 5)+32$
Rule 2: Associativity
Arithmetic operators (*, /, \%, +, -) are left associative: operators of
same precedence evaluate from left to right

## Parentheses

Any expression can be put in parentheses by means of
■ associativities

- precedences

■ arities (number of operands)
of the operands in an unambiguous way (Details in the lecture notes).

## Arity

## Rule 3: Arity

Unary operators +, - first, then binary operators +, -.
$-3-4$
means
$(-3)-4$

## Expression Trees

Parentheses yield the expression tree


## Evaluation Order

"From top to bottom" in the expression tree

$$
9 * \text { celsius / } 5+32
$$



## Expression Trees - Notation

Common notation: root on top


## Evaluation Order

Order is not determined uniquely:

```
9 * celsius / 5 + 32
```



## Evaluation Order - more formally

- Valid order: any node is evaluated after its children


In C++, the valid order to be used is not defined.

■ "Good expression": any valid evaluation order leads to the same result.

- Example for a "bad expression": $(\mathrm{a}+\mathrm{b}) *(\mathrm{a}++)$


## Evaluation order

## Guideline

Avoid modifying variables that are used in the same expression more than once.

## Arithmetic operations

|  | Symbol | Arity | Precedence | Associativity |
| :--- | :---: | :---: | :---: | :--- |
| Unary + | + | 1 | 16 | right |
| Negation | - | 1 | 16 | right |
| Multiplication | $*$ | 2 | 14 | left |
| Division | $/$ | 2 | 14 | left |
| Modulus | $\%$ | 2 | 14 | links |
| Addition | + | 2 | 13 | left |
| Subtraction | - | 2 | 13 | left |

```
All operators: [R-value }\times\mathrm{ ] R-value }->\textrm{R}\mathrm{ -value
```


## Assignment expression - in more detail

■ Already known: $\mathrm{a}=\mathrm{b}$ means
Assignment of $b$ (R-value) to a (L-value).
Returns: L-value
■ What does $\mathrm{a}=\mathrm{b}=\mathrm{c}$ mean?
■ Answer: assignment is right-associative
$\mathrm{a}=\mathrm{b}=\mathrm{c} \quad \Longleftrightarrow \quad \mathrm{a}=(\mathrm{b}=\mathrm{c})$

Example multiple assignment:
$\mathrm{a}=\mathrm{b}=0 \Longrightarrow \mathrm{~b}=0 ; \mathrm{a}=0$

## Division and Modulus

■ Operator / implements integer division
5 / 2 has value 2
■ In fahrenheit.cpp
$9 *$ celsius / $5+32$
15 degrees Celsius are 59 degrees Fahrenheit
■ Mathematically equivalent. . . but not in C ++ !

```
9 / 5 * celsius + 32
```

15 degrees Celsius are 47 degrees Fahrenheit

## Division and Modulus

- Modulus-operator computes the rest of the integer division


## 5 / 2 has value 2 , <br> $5 \% 2$ has value 1.

- It holds that:

```
(a / b) * b + a % b has the value of a.
```


## In-/Decrement Operators

Post-Increment
expr++
Value of expr is increased by one, the old value of expr is returned (as R-value)
Pre-increment
++ expr
Value of expr is increased by one, the new value of expr is returned (as L-value)
Post-Dekrement
expr--
Value of expr is decreased by one, the old value of expr is returned (as R-value)
Prä-Dekrement
--expr
Value of expr is increased by one, the new value of expr is returned (as L-value)

## Increment and decrement

■ Increment / Decrement a number by one is a frequent operation
■ works like this for an L-value:

```
expr = expr + 1.
```

Disadvantages

- relatively long

■ expr is evaluated twice (effects!)

## In-/decrement Operators

## In-/Decrement Operators

```
Example
int a = 7;
std::cout << ++a << "\n";// 8
std::cout << a++ << "\n";// 8
std::cout << a << "\n"; // 9
```


## In-/Decrement Operators

Is the expression
++ expr; $\leftarrow$ we favour this
equivalent to
expr++;?
Yes, but
■ Pre-increment can be more efficient (old value does not need to be saved)

- Post In-/Decrement are the only left-associative unary operators (not very intuitive)


## Arithmetic Assignments

a $+=\mathrm{b}$
$\Leftrightarrow$
$\mathrm{a}=\mathrm{a}+\mathrm{b}$
analogously for - , *, / and \%

## Arithmetic Assignments

| Gebrauch | Bedeutung |
| :---: | :--- |
| $+=$ expr1 += expr2 expr1 = expr $1+$ expr2 |  |
| -= expr1 -= expr2 expr1 = expr1 - expr2 |  |
| *= expr1 *= expr2 expr1 = expr1 * expr2 |  |
| /= expr1 /= expr2 expr1 = expr1 / expr2 |  |
| $\%=$ expr1 \%= expr2 expr1 = expr1 \% expr2 |  |

Arithmetic expressions evaluate expr1 only once.
Assignments have precedence 4 and are right-associative.

## Binary Numbers: Numbers of the Computer?

Truth: Computers calculate using binary numbers.


## Binary Number Representations

Binary representation ("Bits" from $\{0,1\}$ )

$$
b_{n} b_{n-1} \ldots b_{1} b_{0}
$$

corresponds to the number $b_{n} \cdot 2^{n}+\cdots+b_{1} \cdot 2+b_{0}$


## Binary Numbers: Numbers of the Computer?

Stereotype: computers are talking 0/1 gibberish
Thaoulu Mhuruw Mhauluo


## Hexadecimal Numbers

Numbers with base 16

$$
h_{n} h_{n-1} \ldots h_{1} h_{0}
$$

corresponds to the number

$$
h_{n} \cdot 16^{n}+\cdots+h_{1} \cdot 16+h_{0} .
$$

notation in $\mathrm{C}_{++}$: prefix 0 x
Example: 0xff corresponds to 255.

## Example: Hex-Colors



## Why Hexadecimal Numbers?

■ A Hex-Nibble requires exactly 4 bits. Numbers 1, 2, 4 and 8 represent bits 0, 1, 2 and 3.
■ „compact representation of binary numbers"
32-bit numbers consist of eight hex-nibbles: $0 \times 00000000$-- 0xffffffff $0 \times 400=1 K i=1^{\prime} 024$.
$0 \times 100000=1 M i=1^{\prime} 048^{\prime} 576$.
$0 \times 40000000=1 G i=1^{\prime} 073.741,824$.
$0 \times 80000000$ : highest bit of a 32-bit number is set
$0 x f f f f f f f f$ : all bits of a 32-bit number are set
"0x8a20aaf0 is an address in the upper 2G of the 32-bit address space"

## Why Hexadecimal Numbers?

"For programmers and technicians" (Excerpt of a user manual of the chess computers Mephisto II, 1981)

[^0]
## Why Hexadecimal Numbers?

The NZZ could have saved a lot of space ...


## Domain of Type int

```
// Program: limits.cpp
#include <iostream>
#include <limits>
int main()
i
    std::cout << "Minimum int value is "
        << std::numeric_limits<int>::min() << ".\n"
        << "Maximum int value is "
        return 0;
}
```

For example
Minimum int value is -2147483648 .
Maximum int value is 2147483647 .

## Domain of the Type int

■ Representation with $B$ bits. Domain comprises the $2^{B}$ integers:

$$
\left\{-2^{B-1},-2^{B-1}+1, \ldots,-1,0,1, \ldots, 2^{B-1}-2,2^{B-1}-1\right\}
$$

- On most platforms $B=32$

■ For the type int C++ guarantees $B \geq 16$
■ Background: Section 2.2.8 (Binary Representation) in the lecture notes.

## Over- and Underflow

- Arithmetic operations $(+,-, *)$ can lead to numbers outside the valid domain.
- Results can be incorrect!

$$
\text { power8.cpp: } 15^{8}=-1732076671
$$

power20.cpp: $3^{20}=-808182895$

- There is no error message!


## The Type unsigned int

■ Domain

$$
\left\{0,1, \ldots, 2^{B}-1\right\}
$$

■ All arithmetic operations exist also for unsigned int.
■ Literals: $1 \mathrm{u}, 17 \mathrm{u} .$.

## Conversion

| int Value | Sign | unsigned int Value |
| :---: | :---: | :---: |
| $x$ | $\geq 0$ | $x$ |
| $x$ | $<0$ | $x+2^{B}$ |

[^1] ternally

## Mixed Expressions

■ Operators can have operands of different type (e.g. int and unsigned int).
$17+17 u$

■ Such mixed expressions are of the "more general" type unsigned int.
■ int-operands are converted to unsigned int.

## Conversion "reversed"

The declaration
int a $=3 u$;
converts $3 u$ to int.
The value is preserved because it is in the domain of int; otherwise the result depends on the implementation.

## Signed Number Representation

■ (Hopefully) clear by now: binary number representation without sign, e.g.

$$
\left[b_{31} b_{30} \ldots b_{0}\right]_{u} \widehat{=} b_{31} \cdot 2^{31}+b_{30} \cdot 2^{30}+\cdots+b_{0}
$$

■ Obviously required: use a bit for the sign.

- Looking for a consistent solution

The representation with sign should coincide with the unsigned solution as much as possible. Positive numbers should arithmetically be treated equal in both systems.


[^0]:    
    
    
    
    
    
    
    
    7580
    $\left(14 \times 16^{\circ}\right)+\left(5 \times 16^{1}\right)+\left(0 \times 16^{3}\right)+\left(0 \times 16^{3}\right)-14+80+0+0-$
    

[^1]:    Using two complements representation, nothing happens in-

