
Lecturer: Prof. B. Gärtner

Informatik für Mathematiker und Physiker HS16

Exercise Sheet 13

Submission deadline: 15:15 - Tuesday 20th December, 2016

Course URL: http://lec.inf.ethz.ch/ifmp/2016/

Assignment 1 – Doubling Stack (4 points) [from: Exam Summer 2016, ex.8]

The class DoublingStack maintains a stack as doubly-linked list of arrays where each array has twice
the size of the previous one. This ensures that new memory does not need to be allocated in every
push operation, but only if the respective top array is full. The following sketch visualizes a doubling
stack after pushing the five elements 6, 8, 2, 7, 7.

Given below is the program code of the class (as well as the helper-class for the Nodes).

1 struct Node { // f o r one a r r a y i n the l i s t
2 int∗ values ; int size ; Node∗ next ; Node∗ prev ; // data members
3
4 Node (int s , Node∗ p)
5 : values (new int [s]) , size (s) , next (0) , prev (p) // c o n s t r u c t o r
6 {}
7
8 ˜Node () { delete [] values ; } // d e s t r u c t o r
9

10 Node (const Node& node) { . . . } // copy−c o n s t r u c t o r (not p r i n t e d)
11
12 Node& operator= (const Node& node) { . . . } // as s i gnment op e r a t o r (not p r i n t e d)
13 } ;
14
15
16 class DoublingStack {
17 Node∗ first ; Node∗ top ; int pos ; // data members
18 public :
19 DoublingStack ()
20 : first (new Node (1 , 0)) , top (first) , pos (0) // d e f a u l t c o n s t r u c t o r
21 {}
22
23 DoublingStack (const DoublingStack& ds) { . . . } // copy−c o n s t r u c t o r (not p r i n t e d)
24
25 DoublingStack& operator= (const DoublingStack& ds) { . . . } // (not p r i n t e d)
26
27 // POST: put s v a l u e on the s t a c k

1

http://lec.inf.ethz.ch/ifmp/2016/

28 void push (int value) {
29 if (pos == top−>size) { // top a r r a y f u l l
30 top−>next = new Node (2 ∗ top−>size , top) ;
31 top = top−>next ; pos = 0 ;
32 }
33 top−>values [pos++] = value ;
34 }
35 . . .
36 } ;

Solve the following tasks!

i) How many arrays does an initially empty DoublingStack contain after its function push has
been called N times for
N = 7
N = 33

ii) Implement the destructor ˜DoublingStack such that it frees all allocated memory!

1 ˜DoublingStack () {
2 Node∗ node = first ;

3 while (node != [1]) {
4 Node∗ tmp = [2] ;

5 node = [3] ;

6 delete [4] ;

7 }
8 }

iii) Implement the function pop of the class DoublingStack which first deletes the top array if it
is empty, then removes the top element from the stack and returns its value!

1 // PRE : ∗ t h i s i s not empty
2 // POST: . . .
3 int pop () {
4 if (pos == [5]) {
5 top = [6] ;

6 pos = [7] ;

7 delete [8] ;

8 [9] ;

9 }
10 return [10] ;

11 }

This exercise can be handed in via Codeboard! However, if you prefer, you can also hand in your
solutions on paper as before.

Submission: https://codeboard.ethz.ch/ifmp16E13T1

2

https://codeboard.ethz.ch/ifmp16E13T1

Assignment 2 – Queue (4 points) [Skript-Aufgabe 160]

A queue is a data structure whose core functionality consists of the following two operations:

1. Insertion of a new element at the end (“element queues up”);

2. Removal of the first element (“element gets served”).

Implement a type ifmp::queue that supports these operations, with the following public member
functions (and keys of type int).

// POST: key i s added as l a s t e l e me nt
void push_back (int key) ;

// POST: r e t u r n s whether ∗ t h i s i s empty
bool empty () const ;

// PRE : ! empty ()
// POST: f i r s t e l e me nt o f ∗ t h i s i s r e t u r n e d
int front () const ;

// PRE : ! empty ()
// POST: l a s t e l em en t o f ∗ t h i s i s r e t u r n e d
int back () const ;

// PRE : ! empty ()
// POST: f i r s t e l e me nt o f ∗ t h i s i s removed
void pop_front () ;

Implement operator<< to output the elements in the queue from front to back. In addition, as a
queue is a dynamic type, you must also provide copy constructor, assignment operator, and destructor.
Furthermore, the Codeboard-template provides a main-function to test your implementation.

Hint: Queues work similarly to stacks, thus you can take the codes for ifmp::stack as a reference.

I/O-Examples (Explanation: http://lec.inf.ethz.ch/ifmp/2016/codeboard.html)

operations
p -1 p 2 p -3 p 4 f r f s
-1 2

Submission: https://codeboard.ethz.ch/ifmp16E13T2

Assignment 3 – Vector (4 points)

In this exercise we ask you to implement a class ifmp::vector for type int that provides similar
functionality as std::vector<int>, at least as far as dynamic memory management is concerned.
A std::vector is a container that represents arrays that can change in size. Internally, the class
std::vector uses dynamically allocated arrays to store the elements. Like for normal arrays, the
elements are stored in contiguous locations in the memory. This allows for efficient access of the
elements with pointer arithmetic.

3

http://lec.inf.ethz.ch/ifmp/2016/codeboard.html
https://codeboard.ethz.ch/ifmp16E13T2

The class std::vector can not only allocate memory of arbitrary size at the moment it is created,
but it can also dynamically change its size. For instance, you can add an element e to the end of the
vector with the function push_back(e), and the size increases by 1. To add an element at the end
of a vector of size s, it is not enough to simply reserve some memory for this single element and store it
there. The memory occupied by the vector might not be contiguous. Instead you will have to reserve a
larger range in memory and copy over the entire vector to the new range. It would be a wise decision at
this point to reserve a range which is larger by more than one element (good choice is: larger by a factor
of 2, i.e. 2s elements) and hide the additional elements from the user. This way, later push_back
calls can simply write into these spare elements instead of having to copy over the entire vector to a
larger range each time push_back is called.

The Codeboard-link provides you with a template listing the member functions of our ifmp::vector.
Your task is to implement these member functions! If you want, you can write more functions! Fur-
thermore, the Codeboard-template also provides a main-function to test your implementation.

Of course you are not allowed to use any data structure from the Standard Library that already
provides dynamic memory allocation for this exercise, but you should call new and delete directly.

Note: The class ifmp::vector stores three pointers: [begin_, end_of_memory_) denotes
the range of allocated memory, and (end_of_memory_-begin_) is called the capacity of the
vector. [begin_, end_) denotes the range of used memory by the elements of the vector, and
(end_-begin_) is called the size of the vector. The following illustration depicts the pointer layout.
(The name end_of_memory_ is shortened to eom_.)

I/O-Examples (Explanation: http://lec.inf.ethz.ch/ifmp/2016/codeboard.html)

operations
p 1 p 2 p 3 f b s
1 3

Submission: https://codeboard.ethz.ch/ifmp16E13T3

4

http://lec.inf.ethz.ch/ifmp/2016/codeboard.html
https://codeboard.ethz.ch/ifmp16E13T3

	Assignment 1 – Doubling Stack (4 points) [from: Exam Summer 2016, ex.8]
	Assignment 2 – Queue (4 points) [Skript-Aufgabe 160]
	Assignment 3 – Vector (4 points)

