
Lecturer: Prof. B. Gärtner

Informatik für Mathematiker und Physiker HS16

Exercise Sheet 10

Submission deadline: 15:15 - Tuesday 6th December, 2016
Course URL: http://lec.inf.ethz.ch/ifmp/2016/

Initial Remark

In parallel to this exercise sheet there is the Graded Homework. Even though we recommend solving
this exercise sheet now, we will make sure that you will be able to continue in the later weeks even
if you don’t solve this exercise sheet now. i.e. you will have to make sure to solve this sheet for the
exam, but it is up to you whether you want to do this now (and get feedback from your TA) or later on.
Furthermore, in week 11 we will not hand out a regular exercise sheet so that you can focus entirely on
the Graded Homework then.

Assignment 1 – Working with Recursive Functions (4 points)

a) State PRE- and POST-conditions for the following function: [based on: Exam Summer 2011, ex.5]

unsigned int f(const unsigned int n) {
if (n <= 1) return n ;
else return f(n−1) + n ;

}

b) What does the following function output for the given main function? [based on: Exam Summer 2015, ex. 3.b]

// PRE : . . .
// POST: . . .
unsigned int f (const unsigned int i , const unsigned int b) {

if (i == 0) return 0 ;
return 1 + f (i/b , b) ;

}

int main () {
std : : cout << f (1000 , 2) ;
return 0 ;

}

c) Binomial coefficients can be defined in multiple ways. For example:

(
n

k

)
:=


0 if n < k

1 if n ≥ k, k = 0
n
k

(
n−1
k−1
)

if n ≥ k, k > 0

State expressions expr1, ..., expr5 so that the resulting function computes the binomial coefficient
and thus fulfills the given POST-condition! [based on Script Exercise 125.a]

1

http://lec.inf.ethz.ch/ifmp/2016/

// POST: r e t u r n s t he b i n o m i a l c o e f f i c i e n t o f n and k .
unsigned int binomial (unsigned int n , unsigned int k) {

if ([expr1]) return [expr2] ;

if ([expr3]) return [expr4] ;

return [expr5] ;

}

d) A natural number n ≥ 1 is called simple if it is of the form n = 2k ∗ 3l for some natural numbers
k, l ≥ 0. This means that n is called simple if and only if n is a product of a power of 2 with a power
of 3. For example, 18 = 2 · 32 and 24 = 23 · 3 are simple. But for example 10 = 2 · 5 is not simple.

The function below tests for a given n whether it is simple or not. State expressions expr1 and
expr2 so that the resulting function fulfills the PRE- and POST-conditions! [Exam Summer 2013, ex. 3]

// PRE : n > 0
// POST: r e t u r n s t r u e i f and o n l y i f n i s s i m p l e , t h a t means n i s o f
// th e form 2ˆ k ∗ 3ˆ l f o r some n a t u r a l numbers k , l >= 0
bool is_simple (unsigned int n) {

if (n == 1) return [expr1] ;

else return [expr2] ;

}

This exercise can be handed in via Codeboard! However, if you prefer, you can also hand in your
solutions on paper as before.

Submission: https://codeboard.ethz.ch/ifmp16E10T1

Assignment 2 – Subset Sum (4 points)

The subset sum problem is the following: you are given n integers a1, a2, . . . , an and an integer t.
The question is whether there exists a subset S ⊆ {1, 2, . . . , n} such that

t =
∑
i∈S

ai (or t = 0 if S = ∅)

This problem is well-known in theoretical computer science as one of the many known NP-complete
problems. Roughly speaking, an NP-complete problem is a hard problem in the sense that so far, and
despite substantial efforts, no one has found an efficient algorithm for solving it; moreover, it is unlikely
that such an algorithm will ever be found, since this would imply the existence of an efficient algorithm
for all NP-complete problems (and there are hundreds of them).

Now what does “efficient” really mean? There is a precise definition, but in many cases, one would
already be quite happy with something a bit faster than the obvious. In case of the subset sum problem,
the obvious is to go through all subsets S ⊆ {1, 2, . . . , n}, and for each of them check whether the
elements in S sum up to t. As the number of subsets is 2n, this will be very slow already for moderate
values of n. For example, suppose that n = 100, and that you could check 1015 subsets per second
(this is a very optimistic estimate of what the currently fastest computer in the world can do). As there
are 2100 ≈ 1030 subsets, you would still need 1015 seconds, or 31 million years, to complete the task.

Well, for smaller values of n, up to n = 10, say, the obvious method is not so bad after all and finishes
almost instantly on a normal computer. Write a program subset_sum.cpp that first asks the user for
the int t, and then inputs 10 ints. Then it shall determine and output whether the number t occurs
among the subset sums of the 10 ints (in the I/O example below this is the case because 3 == 1 + 2).
The assignment here is to implement the obvious method in form of the following function:

2

https://codeboard.ethz.ch/ifmp16E10T1

// PRE : [beg in , end) i s a v a l i d range , r e p r e s e n t i n g a s e t X o f i n t e g e r s
// POST: r e t u r n s whether t = sum (S) , f o r some s u b s e t S o f X, where sum (S) i s
// th e sum o f a l l e l e m e n t s o f S (or 0 i f S i s empty) .
bool is_subset_sum (int t , const int∗ begin , const int∗ end) ;

You may use one or more helper functions.

I/O-Examples (Explanation: http://lec.inf.ethz.ch/ifmp/2016/codeboard.html)

3
1 0 0 2 0 0 0 0 0 0
1

Submission: https://codeboard.ethz.ch/ifmp16E10T2

Assignment 3 – Prefix Trees (4 points) [based on Exam Summer 16, ex. 6]

The following EBNF defines a language for the description of prefix trees. These can be used to
efficiently store a set of words by sharing common beginnings. An expression in parentheses stands for
a prefix tree, characters designate edge labels. An illustrating example is shown below (bold: the words
stored in the leaves of the prefix tree; every leaf of the tree corresponds to a stored word).

Tree = '(' Branch { Branch } ')'
Branch = Label [Tree]
Label = 'a' | 'b' | . . . | 'z'

Example:

(t (e (n a) o) i (n (n) f)) ⇐⇒

a) Which of the following strings are valid Trees according to the EBNF?

(i) a

(ii) (a (b) c)

(iii) (a ((b) c) d)

(iv) (a b (c d e) f g (h i j) k)

b) Fill in the gaps such that the following main function returns the depth of a valid prefix tree that
is provided at the input stream according to this EBNF. The depth of a tree is the length of the
longest path from the root to a leaf. In the example above, the depth is 3, and this corresponds
to the length of the longest stored words ten, tea, and inn. In the following code the definition
of lookahead, all #include<...>, and a separate declaration of Branch before Tree are not
printed due to space constraints but are present in the program!

1 // POST: l e a d i n g w h i t e s p a c e c h a r a c t e r s a r e e x t r a c t e d from i s , and the
2 // f i r s t non−w h i t e s p a c e c h a r a c t e r i s r e t u r n e d (0 i f t h e r e i s none)
3 char lookahead (std : : istream& is) ;
4

5 // PRE : Tree = ' (' Branch { Branch } ') '
6 // POST: E x t r a c t s t r e e from i s and r e t u r n s i t s depth
7 int Tree (std : : istream& is) {
8 char c ; is >> c ; // e x t r a c t ' ('

3

http://lec.inf.ethz.ch/ifmp/2016/codeboard.html
https://codeboard.ethz.ch/ifmp16E10T2

9 int depth = [expr1] ;

10 while (lookahead(is) != ')') {
11 const int bdepth = [expr2] ;

12 if ([expr3]) [expr4] ;

13 }
14 is >> c ; // e x t r a c t ') '
15 return depth ;
16 }
17

18 // PRE : Branch = L a b e l [Tree]
19 // POST: E x t r a c t s s i n g l e branch from i s and r e t u r n s i t s depth
20 int Branch (std : : istream& is) {
21 char c ; is >> c ; // e x t r a c t l a b e l

22 if (lookahead (is) == '(') return [expr5] ;

23 return 1 ;
24 }
25 int main () {
26 const int depth = Tree(std : : cin) ;
27 std : : cout << "Longest stored word has length " << depth << "\n" ;
28 return 0 ;
29 }

This exercise can be handed in via Codeboard! However, if you prefer, you can also hand in your
solutions on paper as before.

Submission: https://codeboard.ethz.ch/ifmp16E10T3

Assignment 4 – Bridges (4 points) [based on: Exam Summer 2015, (new EBNF)]

The following EBNF describes simple viaducts (connections of bridges)

viaduct = bridge { bridge }
bridge = "<" landbridge ">" | "<" riverbridge ">"
landbridge = "-" { "-" }
riverbridge = "ˆ" { "ˆ" }

For example, <----><--><ˆˆˆ><---> describes a valid viaduct according to the above EBNF.
Answer the following questions:

a) List the terminal symbols in the above EBNF!

b) List the nonterminal symbols in the above EBNF!

c) How do you have to extend the above EBNF to allow for riverbridges to consist of either one or two
bridge pieces "ˆ" but not more?

d) Write the above EBNF as a BNF.

This exercise can be handed in via Codeboard! However, if you prefer, you can also hand in your
solutions on paper as before.

Submission: https://codeboard.ethz.ch/ifmp16E10T4

4

https://codeboard.ethz.ch/ifmp16E10T3
https://codeboard.ethz.ch/ifmp16E10T4

	Initial Remark
	Assignment 1 – Working with Recursive Functions (4 points)
	Assignment 2 – Subset Sum (4 points)
	Assignment 3 – Prefix Trees (4 points) [based on Exam Summer 16, ex. 6]
	Assignment 4 – Bridges (4 points) [based on: Exam Summer 2015, (new EBNF)]

