ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Ubungen zur Vorlesung Informatik (D-MATH / D-PHYS) HS 2016
Dozent: B. Gartner
http://lec.inf.ethz.ch/ifmp/2016

Bonus Exercise 22.11. - 6.12.2016 (23.59)

Bonus Exercise: Do-It-Yourself Stack Processor Simulator.

Introduction

In the first lecture of this course, it was demonstrated — B

using cardboard boxes and paper sheets — how a com- VZ

puter executes a program. A set of paper sheets car- Fets L R
rying the instructions were created (assembled). The

012 3 4586 7 89
paper sheets (instructions and data) were stored in card- 8 4

board boxes (memory). In multiple turns, instructions

were fetched from a box, read (decoded), and executed.

Temporary results were displayed on two hands. This

has been repeated until the program was finished and

the result was available.

In this project, you will automate this process by writing a C++ program for simulating a fully-fledged
virtual CPU (Central Processing Unit, or simply processor) that is able to execute programs in machine
language. In the following, we refer to this virtual stack-based processor! as StackCPUs. You will
understand how a processor works, what machine language is, and how machine language can be
displayed in human readable assembler format.

We have split the work into two subtasks.

(a) Disassembly: your program receives instructions in hexadecimal form and translates them into
a human readable form. This part helps you to understand the machine instructions.

(b) Simulation: your program simulates a system consisting of a processor, memory, and in- and
output. This simulated system executes the machine instructions by applying their effect.

Although the long and technical descriptions in parts of this project may look frightening at first, be
assured that it is not as difficult as it may appear. We believe that this project is fun and hope you
enjoy working on it!

Before starting, please read carefully the following guidelines regarding this bonus exercise:

e This is a graded exercise, and the programs are graded automatically.

e Maximal reachable points are 100. You can hand-in multiple versions, the submission with the highest

n

score counts. If you get n points, you get a bonus of é * 705 of a grade.

e Cheating is not rewarded: if you tune your submission to the provided test inputs, you will not receive
all points. We will run your program with hidden test inputs as well.

e Hand-in using the online submission system, no other forms of hand-ins will be accepted.
e Start early. If you have a problem on the day of submission, we may not be able to solve it.

e Before sending a mail with a question to this exercise, check the course homepage for most recent
information.

e The ETH Disciplinary Code applies to this bonus exercise as it constitutes part of your final grade. It is
not allowed to share any (hand)written or electronic (partial) solutions with any of your fellow students.
We are obligated to report any violations of the Code. The only exception we make is that we encourage
you to verbally discuss the task with your fellow students.

e We reserve the right to invite you to an oral examination. This can be triggered randomly or by a
similarity check and thus does not necessarily imply suspicion.

ETH Codeboard link: https://codeboard.ethz.ch/ifmpl6Bonus

1The Java Virtual Machine and Microsoft's Common Language Runtime are prominent examples of stack-based virtual
architectures.

http://lec.inf.ethz.ch/ifmp/2016
https://codeboard.ethz.ch/ifmp16Bonus

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Ubungen zur Vorlesung Informatik | (D-ITET), Blatt 10 2

Note: There are gaps in the specification that lead to undefined behavior for incorrect machine language input
(an illegal instruction, a division by zero, overflow or underflow, memory out of bounds,...). You may assume
that the machine language input is correct, and all our test inputs satisfy this assumption. Still, try to protect
against errors in the input, or in your own code, for example by using assertions!

(a) Disassembly

A program is provided at the standard input as a decimal integer count n followed by a series of n
instructions encoded as hexadecimal numbers. Disassembly is the translation of a stream of instruction
values into a human-readable format. The reverse is called assembly.

Remark: Reading an unsigned integer i in hexadecimal form from standard input can be accomplished
with std: :cin >> std::hex >> i. Once switched to hex mode, the input stream stays in this mode
until it is switched back to decimal mode with std: :cin >> std: :dec. In case of doubt, it is a good
idea to simply switch each time you read. The same is true for output. Writing an unsigned integer X in
hexadecimal form to the standard output can be accomplished with std: :cout << std::hex << X
(this does not write the leading 0x).

In order to disassemble instructions, they must be decoded first. Decoding means splitting the 32-bit
values into its components: opcode (8 bits) and operand (24 bits). The instruction layout is described
in Appendix A.3. An opcode uniquely identifies an instruction. The opcodes of StackCPUi4 are
summarized in Section A.5 of the Technical Specification on page 6. The meaning of the operand
varies between different instructions.

Decoding Examples:

The instruction value 0x21000000 should be decoded into opcode=0x21=33 and operand=0 (corresponding
to instruction sub). The instruction value 0x3200010A should be decoded into opcode=0x32=50, operand =
0x10A=266 (corresponding to instruction const 266).

Decode and disassemble instructions read from standard input.

e When reading the command disassemble from standard input, enable disassembly mode.
e Read the number of instructions n.

e Qutput each of the n instructions in the format <mnemonic> <operand> followed by a new-
line character. <mnemonic> should be replaced by the name (such as add or jmp) of the opcode
encoded by the first 8 bits of the instruction. Depending on the opcode, <operand> can be
empty. Otherwise, <operand> should be replaced by the decimal signed integer value encoded
by the last 24 bits of the instruction. Provide spaces between name and operand.

e For illegal opcodes, i.e. opcodes that are not part of the instruction set, output data followed
by the hexadecimal instruction value.

e Output end at the end of the disassembly.

Examples:
input ; output input ; output input ; output
disassemble : disassemble : disassemble :
5 I 10 I 10 I
0x3200000f : const 15 0x32000000 : const 0 0x320000ff : const 255
0x12000000 | out 0x32000001 | const 1 0x32000100 | const 256
0x3200000a | const 10 0x20000000 | add 0x31000000 | store
0x13000000 : outchar 0x26000000 : dup 0x32000100 : const 256
0x1000000 , hlt 0x26000000 | dup 0x30000000 | load

I end 0x12000000 | out 0x12000000 | out

: 0x32000009 : const 9 0x3200000a : const 10

| 0x41000009 | jeq 9 0x13000000 | outchar

[0x40000001 | jmp 1 0x1000000 1 hlt

: 0x1000000 : hlt Oxff : data Oxff

: , end , end

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Ubungen zur Vorlesung Informatik | (D-ITET), Blatt 10 3

(b) Simulation

Implement the processor that executes the machine instructions. Figure 1 depicts on a high level how
your processor processes machine instructions. The processing of an instruction is divided into three
phases (remember the cardboard example) and repeats until the device is instructed to halt:

Processor

Repeat until halted:

)
g
- >
bD : 3=
© 90 =}
o | Decode £
read / write >3
x read / write
(%)
]
i)
)

Figure 1: Processor execution instructions

Fetch: The instruction to be executed is loaded from memory. The program counter PC holds the
location,i.e. the memory address, of the instruction to be executed next. Upon start up of the processor
the PC must be set to the address of the first instruction of a program. This is always 0.

Decode: The instruction fetched in the previous phase is decoded into its components opcode and
operand. An opcode uniquely identifies an instruction and its format, i.e. number and type of operands.
The memory layout of a machine instruction is presented in Appendix A.3.

Execute: Each instruction has effects. The execution of an instruction means to apply these effects.
In our processor, the effect can be a modification of memory content, the modification of the operand
stack, an input, or output. Moreover, each instruction modifies the PC: With the execution of an
instruction the PC is either set to the next instruction or, in the case of a branch instruction, to the
branch target if the branch is taken.

Your program of this sub task must implement these phases with the following algorithm

1. When reading the command simulate from standard input, enable simulation mode.

2. Store the machine instructions present at standard input to StackCPU1g memory consecutively
starting at address 0.

Set the program counter (PC) to address 0.
Fetch instruction at PC from memory.
Decode the instruction.

Execute the instruction: apply its effect, as specified in Appendix A.5.

N o o bk~

If not halted goto 4, exit the processor simulator program otherwise.

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Ubungen zur Vorlesung Informatik | (D-ITET), Blatt 10

Address Instruction Commented Disassembly Meaning in C++
16
0 0x3200000f const 15 ; load i for
1 0x30000000 load ; decrement
2 0x26000000 dup ; output
3 0x26000000 dup ; test int i = 10;
4 0x32000000 const 0 o i d == while (i != 0) {
5 0x4100000e jeq 14 ; jump to halt
6 0x12000000 out ; output i std::cout << i;
7 0x32000001 const 1 ; decrement i --1i;
8 0x21000000 sub ;
9 0x3200000f const 15 ;
10 0x31000000 store ; store i
11 0x3200000a const 10 ; output newline std::cout << "\n";
12 0x13000000 outchar
13 0x40000000 jmp 0 ; jump to start }
14 0x1000000 hlt ; stop program
15 Oxa data Oxa ; variable i
16 end

Figure 2: Output numbers from 10 to 1. Instruction stream with disassembly and meaning in C++

Example of the fetch, decode and execute phase:

Assume the processor was loaded with the instruction stream displayed in Figure 2 and has already
executed some steps such that the program counter PC has the value 4.

Fetch: In the fetch phase the processor retrieves the instruction from simulated memory located at
address PC. Here this is mem[PC] = mem[4] = 0x32000000.

Decode: The processor decodes the machine instruction 0x32000000 = 50 - 224 + 0: opcode = 50,
operand = 0. According to the specification, opcode 50 corresponds to a const instruction.
Execute: After decoding, the processor is ready to execute the instruction, i.e. it applies the effect of
the const operation and pushes the value 0 to the operand stack. Another effect of the instruction is
the advancing of the program counter by 1.

The processor continues with the fetch phase again: The next instruction to be executed is 9x4100000e
corresponding to jeq 14. The effect of this instruction is to compare the two top most values on the
stack and to jump to 14 in case they are equal. The processor continues with this scheme until it has
reached a hlt instruction.

Example test runs:

input ; output input ; output input ; output
simulate : 15 simulate : 123456789 simulate : 255
5 ! 10 ! 9 !
0x3200000£f } 0x32000000 } 0x320000£f }
0x12000000 : 0x32000001 : 0x32000100 :
0x3200000a ! 0x20000000 ! 0x31000000 !
0x13000000 } 0x26000000 } 0x32000100 }
0x1000000 ‘ 0x26000000 ‘ 0x30000000 |

! 0x12000000 ! 0x12000000 !

| 0x32000009 0x3200000a

| 0x41000009 | 0x13000000 |

! 0x40000001 ! 0x1000000 !

} 0x1000000 } }

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Ubungen zur Vorlesung Informatik | (D-ITET), Blatt 10 5

A Specification of the StackCPU4 System

A.1 System Memory

Instructions and data of the simple CPU are stored in memory. The system memory of our simulated
machine has a total capacity of 256 KB. It is 32-bit word addressed. Thus there are 218/4 = 216
different addresses.

| (32bit) | (32bit) [(32bit) | (3bit) [(32bit) | (32bit) [(32bit) | (32bit) |
0 1 2 216 3 216 2 216 1

For the implementation of the memory you can assume that an unsigned int has at least 32 bits.

A.2 Operand Stack and Program Counter

The StackCPU1¢ machine is stack-based architecture. It features an operand stack for storing results
of computations. It is used by machine instructions such as arithmetics or comparisons, or for short
term storage of temporary values. All stack entries on this simulated processor are 32-bits wide. The
operand stack has at least 16 entries.

The processor has a register called the program counter (PC). This register points to the address of
the next instruction to be executed. This register is implicitly modified during the execution of any
instruction.

You may for example implement the PC register using an unsigned int, and the operand stack using
a vector of int, or std: :stack<int>.

A.3 Instruction Format and Encoding

All instructions are 32-bit wide and made up of the following components: Operation code (opcode)
and at most one operand. Opcode and operand are encoded at fixed locations in the instruction, but
occupy different sizes as you can see in the following figure:

opcode operand
(8 bit) (24 bit)
31 24 23 0

An opcode (the first two hex nibbles of the hexadecimal instruction value) uniquely identifies an
instruction. The operand can hold a signed integer value, encoded by 24 bits (the last six hex nibbles
of the hexadecimal instruction value), in two's complement representation 2 see Section A.5. If an
instruction does not use an operand, its value is ignored by the processor.

You may for example implement instructions using unsigned int.

A.4 Instruction Set Properties

The StackCPU¢4 virtual processor provides a Load-Store architecture, i.e. memory can be only accessed
by load and store operations. All other operations operate on the operand stack or on immediate values.
The instruction set consists of general, stack, memory, arithmetic, and branch instructions. General
instructions are used for input, output, memory access and system control. The arithmetic instructions
implement mathematical operations (+,-,*,div,mod). They all work on 32-bit signed integers and
operate on the operand stack. The behavior of the operations is supposed to correspond exactly to
the behavior of C4++ operators. Branch instructions can make the processor continue processing at
a given location. There is one unconditional branch and branches that are triggered by a condition.
Branch targets are absolute memory addresses.

2Let v be the nonnegative binary number formed by the 24 bits; if the highest of the 24 bits is 0, the encoded value
is v, otherwise v — 224, For example, 0x00000a = 0xa represents the decimal value 10, while Oxffffff is —1.

https://en.wikipedia.org/wiki/Load/store_architecture

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Ubungen zur Vorlesung Informatik | (D-ITET), Blatt 10 6

A.5 StackCPU; Instruction set

Legend: c denotes a constant and is encoded as signed integer operand
PC stands for the program counter
S stands for the operand stack

l,r,v,m denote 32-bit signed integer values

Mnemonic and operands | Opcode | Description / Effect

General instructions
hlt 0x1 Halt the system (exit simulator).

in 0x10 Read a decimal integer value v from standard input std::cin, and
push v onto S. Then increment PC.

inchar 0x11 Read a character value v from standard input std::cin, and push v
onto S. Then increment PC.

out 0x12 Pop the top value v from S, and write v to standard output as decimal
integer. Then increment PC.

outchar 0x13 Pop the top value v from S ,and write v to standard output as character.
Then increment PC.

Arithmetic instructions
add 0x20 Pop value r from S. Pop value [from S. Push value [+7 onto S. Then
increment PC.

sub 0x21 Pop value r from S. Pop value [from S. Push value [—r onto S. Then
increment PC.

mul 0x22 Pop value r from S. Pop value [from S. Push value [-7 onto S. Then
increment PC.

div 0x23 Pop value r from S. Pop value [from S. Push value [/r (integer
division!) onto S. Then increment PC.

mod 0x24 Pop value r from S. Pop value | from S. Push value [%r (rest of
integer division) onto S. Then increment PC.

neg 0x25 Pop value r from S. Push value —r onto S. Then increment PC.

Stack Management
const ¢ 0x32 Push the integer value c onto S. Then increment PC.

dup 0x26 Pop value r from S. Push value r onto S twice. Then increment PC.

Memory operations
load 0x30 Pop value m from S. Push the 32-bit signed integer value r stored at
memory location m to S. Then increment PC.

store 0x31 Pop value m from S. Pop value v from S. Store v at memory location
m as 32-bit signed integer value. Then increment PC.

Branch instructions
jmp c 0x40 Set program counter PC to c.

jeq c 0x41 Jump if equal: Pop value r from S. Pop value [from S. If [= r then
assign ¢ to PC, otherwise increment PC.

jne ¢ 0x42 Jump if not equal: Pop value r from S. Pop value [from S. If | # r
then assign c to PC, otherwise increment PC.

jls ¢ 0x43 Jump if less: Pop value r from S. Pop value [from S. If [< r then
assign ¢ to PC, otherwise increment PC.

jle c 0x44 Jump if less or equal: Pop value r from S. Pop value [from S. If [< r
P q p P
then assign c to PC, otherwise increment PC.

	Specification of the StackCPU16 System
	System Memory
	Operand Stack and Program Counter
	Instruction Format and Encoding
	Instruction Set Properties
	StackCPU16 Instruction set

