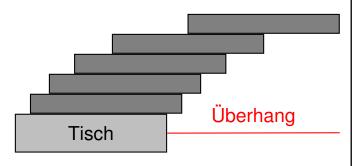


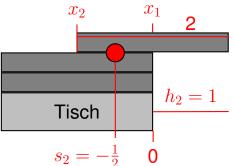
Kann mit beliebig vielen Stäben ein beliebig grosser Überhang erreicht werden?



- Ja
- Nein

.

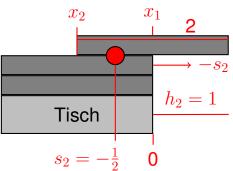
Überhang *vor* Stab i: h_i Schwerpunkt $1, \ldots, i$: $s_i = \frac{x_1 + \cdots + x_i}{i}$



- Ja
- Nein

1

Überhang vor Stab i: $s_i = \frac{h_i}{i}$ Schwerpunkt 1,...,i: $s_i = \frac{x_1 + \dots + x_i}{i}$



$$h_3 = h_2 - s_2 = H_1 + \frac{1}{2} = H_2$$

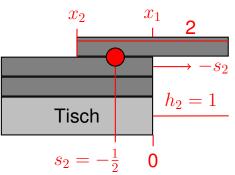
 $s_3 = \frac{(x_1 - s_2) - (x_2 - s_2) - 1}{3} = -\frac{1}{3}$

Ja

Nein

.

Überhang vor Stab i: $s_i = \frac{h_i}{i}$ Schwerpunkt $1, \dots, i$: $s_i = \frac{x_1 + \dots + x_i}{i}$



$$h_{i+1} = h_i - s_i = H_{i-1} + \frac{1}{i} = H_i$$

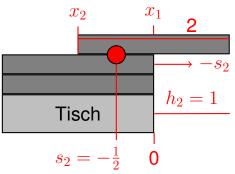
$$s_{i+1} = \frac{(x_1 - s_i) - \dots - (x_2 - s_i) - 1}{i+1} = -\frac{1}{i+1}$$

🚹 Ja

Nein

.

Überhang *vor* Stab i: h_i Schwerpunkt 1,...,i: $s_i = \frac{x_1 + \dots + x_i}{i}$



Überhang *nach* n Stäben ist H_n , die n-te Harmonische Zahl (wird beliebig gross für $n \to \infty$).

