
Lecturer: Prof. B. Gärtner

Informatik für Mathematiker und Physiker HS15

Exercise Sheet 14

Submission deadline: (no submission)

Course URL: http://lec.inf.ethz.ch/ifmp/2015/

Preface

This exercise sheet contains three exercises: one on inheritance, one with exam-style questions, and one
challenge. The exercise with the exam-style questions consists of old exam questions, rewritten to give
you an idea of how the questions on the actual exam might look like. In square-brackets [...] a reference
to the initial exam question is given.

House painting

Mr. Brush is hired to paint a house facade. To make an offer
he needs to know the area that requires painting. He looks at
the house facade and sees that it can be approximated by us-
ing different shapes: Triangle (width, height), Rectangle (width,
height) and Circle (radius). Holes in shapes can be accounted for
by subtracting the non-paintable areas, e.g. a door or a window.

Your task is to help Mr. Brush by implementing the three re-
quired shapes: Rectangle, Triangle and Circle. Each shape
is implemented with its own class that inherits from class Shape
and overrides the virtual member function get_area that returns the area defined by the shape.

We provide you the template house_template.cpp that is available from the course homepage. This
template contains the definitions for the class Shape, and the main function that parses the test data,
and calculates the area that requires painting. Note that in the main function the calls to the constructor
are commented to make the template compile. Implement the three classes Rectangle, Triangle,
and Circle, fill in the parameters for the constructor calls, and uncomment the constructor calls. The
places where you have to add or modify code are marked with TODO: IMPLEMENT

Test data is provided as text in form of shape objects. The parser for the test data is included in the
template to avoid a lengthy specification. You do not have to implement it, but you may want to take
a look at it to understand how it works. Also you can use it for your own tests.

Judge Examples (Explanation: http://lec.inf.ethz.ch/ifmp/2015/judge boxes.html)

1

http://lec.inf.ethz.ch/ifmp/2015/
http://lec.inf.ethz.ch/ifmp/2015/judge_boxes.html

triangle + 5.4 2.5
rectangle + 5.4 3.6
rectangle - 1.2 2.3
rectangle - 1.2 1.1
circle - 0.45
end
21.4738

Submission: https://challenge.inf.ethz.ch/team/websubmit.php?cid=5&problem=MP15141

Exam-Style Questions

a) [Winter 2014, Ex.1]

For each of the following 5 expressions, write C++ type and value in the corresponding gap! Assume
that x has type int and value 3 at the beginning of each subtask.

Expression Type Value
0 < 1 && 1 != 1 || ++x > 3

12.0 / 3u / 2u
2 + x++

2014 % 4 + x % 2
x / 2 + 9.0f / 6

b) [Winter 2014, Ex.2]

For each of the following three code fragments, write down the sequence of numbers that it outputs!

a) for (int i=0; i<100; i*=2)
std::cout << ++i << " ";

Output:

b) int i=0;
int j=5;
while (i != j)

std::cout << (i+=2) - j++ << " ";

Output:

c) void f(unsigned int x) {
if (x == 0)

std::cout << "-";
else {

std::cout << "*";
f(x-1);
std::cout << "*";

}
}
f(5);

Output:

2

https://challenge.inf.ethz.ch/team/websubmit.php?cid=5&problem=MP15141

c) [Winter 2014, Ex.4]

Your task is to provide an implementation of a function that computes a floating-point approximation
of the exponential function

ex :=
∞∑
i=0

xi

i!

for a given real number x. The implementation should be based on this definition of ex as an infinite
series. To obtain an approximation of ex, the function should sum up initial terms of this series (in
double precision floating-point arithmetic) until adding the current term does not change the value
obtained so far anymore. You are not allowed to use any external libraries. Per gap you are only allowed
to write one programming line1 (you may also leave gaps empty).

double exp (double x) {
double t = 1.0; // 1/i!
double ex = 1.0; // i-th approximation of e
double xi = 1.0; // xˆi
double ex old = 0.0;
...
...
...
...
...
...
...

}

d) [Summer 2011, Ex.2]

The following questions shall be answered with either yes or no. In order to obtain points for this
exercise you have to achieve at least 50% of the maximum number of points of this exercise. But for
wrong answers you will not lose points.

a) There is no difference for the user between the following two declarations. � Yes, � No

class foo { struct foo {
int i; int i;

}; };

b) The body (i = i - 0.6;) of the following loop is executed less than 4 times. � Yes, � No

int i = 3.7;
while (i > 0) {

i = i - 0.6;
}

1By a programming line we mean here (i) one statement or (ii) the statements and expressions needed for one compound
statement as e.g. the head-line of a for-loop.

3

c) The binary representation of the decimal number 1.625 is equal to 1.1001. � Yes, � No

d) Given an arbitrary rational number p/q. There exists a base such that p/q admits a finite repre-
sentation in the floating point system with this base. � Yes, � No

e) [Summer 2012, Ex.6]

In this task we are going to write a class Averager which computes averages for given inputs. The
following program illustrates the functionality by computing the average height of three humans. In
general, the average of a sequence of n elements is defined as the sum of these elements divided by n.

int main () {
Averager m;
m.add value (1.85); // human 1
m.add value (1.79); // human 2
m.add value (1.64); // human 3
std::cout << m.average value() << "\n"; // Output: 1.76

return 0;
}

In the following program code we are going to write this class Averager by defining suitable data
members and member functions (Constructor, add_value, average_value). Also, pay attention
to const-correctness. Each gap may contain at most one statement. PRE- and POST-conditions are
not given here in order to not give you too many hints; however, you shall still assert for dangerous
inputs. And you shall also make sure that your specified types do not reduce the precision of any results,
but still do not waste memory. And finally, you may leave gaps empty (as long as this does not affect
the correctness of the program).

// class for computing the average of n values
class Averager {
#1

unsigned int n; // number of values
double s; // sum of values

#2
Averager () #3 {}

#4 add value (#5 v) #6 {
#7
#8

}

#9 average value () #10 {
#11
#12

}
};

4

#1: #2:
#3: #4:
#5: #6:
#7: #8:
#9: #10:
#11: #12:

Challenge

In this exercise you are going to write your very own little implementation of C++.
You are given the base classes

// base c l a s s f o r a l l s t a t e m e n t s
struct statement {
virtual void execute () {} ;

} ;

// base c l a s s f o r a l l e x p r e s s i o n s
template <typename T>
struct expression {
virtual T get_value () const {}

} ;

// base c l a s s f o r a l l l v a l u e s
template <typename T>
struct lvalue : public expression<T> {

virtual void set_value (const T& v) {}
} ;

Derive at least the following classes from this base class:

// v a r i a b l e d e f i n i t i o n w i t h i n i t i a l v a l u e
struct variable ;

// c o n s t a n t w i t h i n i t i a l v a l u e
struct constant ;

// i n c r e m e n t an l v a l u e by the v a l u e o f an e x p r e s s i o n
struct increment ;

// p r i n t th e v a l u e o f an e x p r e s s i o n
struct print ;

// s e q u e n c e o f s t a t e m e n t s
struct block ;

// r e p e a t a b l o c k n t i m e s
struct repeat ;

// e x e c u t e one o f two s t a t e m e n t s based on th e r e s u l t o f a
// Boolean compar i son
struct ifelse ;

5

Use these classes to write meaningful programs of your choice. Here is an example (Kleiner Gauss) that
also shows how the above classes are meant to be used.

// K l e i n e r Gauss :
// i n t s = 0 ;
// f o r (i n t i =1; i <=100; ++i)
// s += i ;

// K l e i n e r Gauss
variable<int> s = 0 ;
variable<int> i = 1 ;
increment<int> next_s (&s , &i) ;
increment<int> next_i (&i) ;
block update ;
update .add (&next_s) ;
update .add (&next_i) ;
repeat kleiner_gauss (&update , 100) ;

// p r i n t r e s u l t
print<int> print_result (&s) ;

// check r e s u l t
constant<int> r = 5 0 5 0 ;
constant<std : : string> y = std : : string("Richtig!") ;
constant<std : : string> n = std : : string("Falsch!") ;
print<std : : string> say_yes (&y) ;
print<std : : string> say_no (&n) ;

isequal<int> correct (&s , &r) ;
ifelse check_result (&correct , &say_yes , &say_no) ;

// e x e c u t e s t a t e m e n t s
kleiner_gauss .execute () ;
print_result .execute () ; std : : cout << std : : endl ;
check_result .execute () ; std : : cout << std : : endl ;

There is a template statements_template.cpp available, which shows you a working example for
expression, lvalue, variable, and print.

6

	Preface
	House painting
	Exam-Style Questions
	a) [Winter 2014, Ex.1]
	b) [Winter 2014, Ex.2]
	c) [Winter 2014, Ex.4]
	d) [Summer 2011, Ex.2]
	e) [Summer 2012, Ex.6]

	Challenge

