
Lecturer: Prof. B. Gärtner

Informatik für Mathematiker und Physiker HS15

Exercise Sheet 13

Submission deadline: 15:15 - Tuesday 8th December, 2015

Course URL: http://lec.inf.ethz.ch/ifmp/2015/

Assignment 1 – Skript-Aufgabe 159 (4 points)

Implement an extended variant of the class ifmp:stack that in addition to the public member
functions push, pop, top, and empty also has the following public member:

// POST: number o f e l e m e n t s i n ∗ t h i s i s r e t u r n e d
unsigned int size () const ;

In addition, implement an equality test for stacks

// POST: r e t u r n s t r u e i f and o n l y i f s1 and s2 c o n t a i n th e same
// k e y s i n the same o r d e r
bool operator== (const stack& s1 , const stack& s2) ;

A main-function to test the new stack operations is available in extended_stack_template.cpp.

Judge Examples (Explanation: http://lec.inf.ethz.ch/ifmp/2015/judge boxes.html)

Input numbers: -1 2 -3 4

stack == copy ? 1

stack == modified ? 0

size ? 4

size modified ? 3

Input numbers: 1

stack == copy ? 1

stack == modified ? 0

size ? 1

size modified ? 0

Submission: https://challenge.inf.ethz.ch/team/websubmit.php?cid=5&problem=MP15131

1

http://lec.inf.ethz.ch/ifmp/2015/
http://lec.inf.ethz.ch/ifmp/2015/judge_boxes.html
https://challenge.inf.ethz.ch/team/websubmit.php?cid=5&problem=MP15131

Assignment 2 – Skript-Aufgabe 160 (4 points)

A queue is a data structure whose core functionality consists of the following two operations:

1. Insertion of a new element at the end (“element queues up”);

2. Removal of the first element (“element gets served”).

Implement a type ifmp::queue that supports these operations, with the following public member
functions (and keys of type int).

// POST: key i s added as l a s t e l e me nt
void push_back (int key) ;

// POST: r e t u r n s whether ∗ t h i s i s empty
bool empty () const ;

// PRE : ! empty ()
// POST: f i r s t e l e me nt o f ∗ t h i s i s r e t u r n e d
int front () const ;

// PRE : ! empty ()
// POST: l a s t e l em en t o f ∗ t h i s i s r e t u r n e d
int back () const ;

// PRE : ! empty ()
// POST: f i r s t e l e me nt o f ∗ t h i s i s removed
void pop_front () ;

In addition, as a queue is a dynamic type, you must also provide copy constructor, assignment
operator, and destructor. Furthermore, queue_template.cpp provides a main-function to test
your implementation. It pushes an integer n to a queue when a n is entered and returns and pops the
first element when b is entered. There are examples in the judge box below.

Hint: Queues work similarly to stacks, thus you can take the codes for ifmp::stack as a reference.
But notice that in order to submit to the judge you must correctly pack everything into one file.

Judge Examples (Explanation: http://lec.inf.ethz.ch/ifmp/2015/judge boxes.html)

a -1 a 2 a -3 a 4 b b
-1 2
Last element: 4

a 1 b
1
Last element: none (queue empty)

Last element: none (queue empty)

Submission: https://challenge.inf.ethz.ch/team/websubmit.php?cid=5&problem=MP15132

2

http://lec.inf.ethz.ch/ifmp/2015/judge_boxes.html
https://challenge.inf.ethz.ch/team/websubmit.php?cid=5&problem=MP15132

Assignment 3 – (4 points)

Note: It’s the same exercise as on sheet 12. The submission deadline was extended by one
week.

In this exercise we ask you to implement a class ifmp::vector for type int that provides similar
functionality as std::vector<int>, at least as far as dynamic memory management is concerned.
Internally, the class std::vector uses dynamically allocated arrays to store the elements. Like for
normal arrays, the elements are stored in contiguous locations in the memory. This allows for efficient
access of the elements with pointer arithmetic.

The class std::vector can not only allocate memory of arbitrary size at the moment it is created,
but it can also dynamically change its size. For instance, you can add an element e to the end of the
vector with the function push_back(e), and the size increases by 1. To add an element at the end
of a vector of size s, it is not enough to simply reserve some memory for this single element and store it
there. The memory occupied by the vector might not be contiguous. Instead you will have to reserve a
larger range in memory and copy over the entire vector to the new range. It would be a wise decision at
this point to reserve a range which is larger by more than one element (good choice is: larger by a factor
of 2, i.e. 2s elements) and hide the additional elements from the user. This way, later push_back
calls can simply write into these spare elements instead of having to copy over the entire vector to a
larger range each time push_back is called.

Download the file vector_template.cpp from the website and implement the member functions
of ifmp::vector. Of course you are not allowed to use any data structure from the Standard Library
that already provides dynamic memory allocation, but you should call new and delete directly.

Note: The class ifmp::vector stores three pointers: [begin_, end_of_memory_) denotes
the range of allocated memory, and (end_of_memory_-begin_) is called the capacity of the
vector. [begin_, end_) denotes the range of used memory by the elements of the vector, and
(end_-begin_) is called the size of the vector. The following illustration depicts the pointer layout.
(The name end_of_memory_ is shortened to eom_.)

Judge Examples (Explanation: http://lec.inf.ethz.ch/ifmp/2015/judge boxes.html)

Input numbers: -8 3 2 0

Size = 4

size <= capacity ? 0

Output []: -8 3 2 0

Output itr: -8 3 2 0

Other Output: 2 2 2 -8 3 2 0

3

http://lec.inf.ethz.ch/ifmp/2015/judge_boxes.html

Input numbers:

Size = 0

size <= capacity ? 0

Output []:

Output itr:

Other Output: 2 2 2

Submission: https://challenge.inf.ethz.ch/team/websubmit.php?cid=5&problem=MP15123

4

https://challenge.inf.ethz.ch/team/websubmit.php?cid=5&problem=MP15123

	Assignment 1 – Skript-Aufgabe 159 (4 points)
	Assignment 2 – Skript-Aufgabe 160 (4 points)
	Assignment 3 – (4 points)

