
INFORMATIK II

am D-BAUG

Kurzzusammenfassung zur Vorlesung 252-0846-00

Fr�uhjahrssemster 2016, ETH Z�urich

Felix Friedrich

1 Introduction

An overview over the planned topics of the course was presented: object oriented pro-
gramming, data structures and algorithms, data bases. I pointed out that the focus of
the course is on solving problems and not primarily on learning a programming lan-
guage. This is underpinned by the discussion of case studies per learned concepts in
the course.

We shortly recapitulated the concept of computers and programming. In particular
we looked at the concept of the Turing Machine and demonstrated its working principle
with the oldest known non-trivial algorithm, the Euclidean Algorithm. Even if we did
not refer to the Turing machine too often later, it constitutes the base of nearly all what
followed in the course.

We treated the programming language for this course, Java, as an imperative language
�rst by comparing it with Pascal. We learned how basic expressions and statements are
translated from Pascal to Java and already looked at the major di�erences: existence of
classes (constituting reference typed) and methods as opposed to (value typed) records
and procedures. We learned that Java does not provide reference parameters. We learned
what the simplest Java program looks like ("hello world").

public class Hello {

public static void main(String [] args)

{

System.out.println("Hello World.");

}

}

Without explicit reference, we learned �rst principles for the implementation of an
algorithm: abstract simple representation (readability and maintainability), removal of
redundant execution steps by code transformation (performance), encapsulation into
reusable blocks (genericity).

1

2 Java I

We introduced Java from scratch, starting from names and quali�ed identi�ers, variables,
(arithmetic) assignments, constants, fundamental types, numerical operations such as
addition, subtraction, multiplication, division and modulus. The modulus turned out
later to be important for wrap-around semantics when accessing data on an array, for
example for circular bu�ers or hashing.

We learned that for positive numbers a and b > 0, the modulus a%bmodulo provides
the rest of a division de�ned by

a%b = a− ba/bc � b,

where ba/bc denotes integer division such as it occurs in the Java language when two
values of type int are divided.

We discussed rules for the exact determination of expression evaluation in terms of
precedence and associativity and discussed increment and decrement operators in pre-
and post�x form. We discussed type compatibilities, explicit and implicit conversion.
Java is strongly typed and therefore assignments between symbols of di�erent type re-
quire type conversions. When converting to a type with larger domain an implicit
conversion takes place. The compiler detects static incompatibilities while the runtime
can detect additional dynamic incompatibilities.

We treated control structures in Java, such as if-, while-, do-while and in particular
for-loops, looked at the commonalities and di�erences between Pascal and Java. The
most remarkable di�erence we identi�ed at the for-loop as it provides more versatile
implementations of loops.

for (int i = 0; i<10; ++i)

{

System.out.println(i + "*" + i + "=" + i*i);

}

for (int x = 1; x <=128; x*= 2)

{

System.out.println ("x= "+ x);

}

As an application of modulus, we looked at the principle of Monte Carlo Simulation
and its foundation, the generation of pseudo random numbers with a linear congruence
generator.

Compilation units in Java consist of classes that can be contained in packages. Static
methods play the role of procedures in Pascal. A self-contained program provides a class
containing a method of the form public static void main(String args[])

2

We used such static methods in order to implement a class for random number gen-
eration.

class RandomNumbers {

static final long m = 2147483647;

static final long b = 12345;

static final long a = 1103515245;

static long u = System.currentTimeMillis ();

// returns a pseudo random number in interval [0,1)

public static double Uniform (){

u = (u * a + b) % m;

return(double)u/m;

}

}

3 Java II

Arrays are dynamic objects in Java that can be (re-)allocated during runtime. As a
consequence of reference semantics in Java, an assignment of variables of type array does
not imply a data copy but only a copy of the reference to the data.

int [] x = new int [10];

int [] y;

y = x; // copies the reference , not the array data

y[3] = 10; // modifies y and consequently also x !

Array bounds are checked at runtime.
Strings are objects that store a sequence of characters. If a literal is assigned to

a string, the memory allocation happens implicitly. We learned that strings, just like
arrays, cannot be compared element-wise by using the built-in operators <, >, ==, etc.
but instead methods available on the strings have to be called, such as x.equals(y).

We discussed the details of pass-by-value by ways of various examples that showed
that object content can change in a method, even if Java is pass-by-value.

We learned about streams such as System.in, System.err and System.out that can
be used in order to in- or output data in Java.

We discussed random number transformation in some details in order to gain an
understanding for generic random number generation from a given discrete distribution.
Of central relevance is the method to draw from an unfair dice that we developed in this
chapter:

static int UnfairDice(double [] p){

double u = LCG.Uniform ();

double sum = p[0];

int res= 0;

while (res < p.length -1 && sum <u) {

res ++;

sum += p[res];

3

}

return res;

}

...

double [] p = {0.1 ,0.3 ,0.1 ,0.2 ,0.1 ,0.2};

int dice = UnfairDice(p);

This method was central for the implementation of the jour-
ney of the ant and its follow-up, the random surfer algorithm.
A random surfer starts at an arbitrary page on the internet
and continues iteratively choosing outgoing links with equal
probabilities. We modeled the behavior of the random surfer
as a Markov Chain with transition matrix P := (Pij)0�i,j�n.
Entries Pij stand for the probabilities to continue on page j
when having started on page i. The method to draw from an
unfair dice was iteratively applied taking respective rows of
the transition matrix P in order to simulate the behavior of
the random surfer. We computed the page rank as visiting
frequency for each page.

4 Classes

Classes in Java contain data and code. Classes have reference semantics, i.e. they have
to be allocated with new. Deallocation is not necessary as Java comes with a Garbage
collector. Before we could actually talk about memory allocation in more detail, we
visited the concept of a stack in the context of recursion. Then we discussed dynamic
memory allocation with new in Java in order to have the minimum available to start
talking about classes.

We motivated the usage of classes with the example of a pump that should be im-
plemented with certain constraints in mind, such as a dependency of its internal state
variables describing pumping head and delivery rate. We started with using classes as
pure data containers.

Technically, we learned that a class can provide several constructors with di�erent
signature. A constructor is called when new(...) is executed according to its parame-
ters, following the principle of method overloading.

We discussed the �rst principle of object-orientation: encapsulation, made possible
in Java with hiding the objects state behind so called getter and setter methods. In our
example, we were able to parameterize the pump such that it keeps its internal state
always in-line with its characteristic curve. Only much later in the course did we revisiti
this example in the context of computing pipe networks.

class Pumpe{

public Pumpe (double H, double Q) { ... }

public Pumpe (double [] H, double [] Q) {...}

4

public double GetH() { ... }

public double GetQ() { ... }

public double SetH(double H) { ... }

public double SetQ(double Q) { ... }

}

Encapsulation is an important concept which helps to give guarantees regarding
invariants. By hiding implementation details behind a de�ned interface it permits to
provide a su�cient level of abstraction.

Methods have access to the data (variables) of their containing class via the implicit
this parameter. If this is not speci�ed in a reference, it is implicitly added provided
that the symbol refers to the class variables.

Passing a variable of class type as parameter means passing a reference to an object.

Case Study: Online Statistics

Wanted: object providing values such as mean or variance without costly computation.

The circular bu�er is a concept to store a limited amount of data. Using this concept
mean and variance can be computed in linear time. Central to the circular bu�er was the
reuse of data in an array by maintaining a pointer with so called wrap-around semantics.

public void Put(double value){

data[pos] = value;

if (n < data.length)

n++;

pos = (pos + 1) % data.length; // wrap around semantics

}

Using the concept of a dynamic (growing) array, the amount of stored data can be
derestricted.

For online computation of mean and variance, the provisional means algorithm turned
out to be much better. It updates the mean according to the formula µn+1 = µn+

xn+1−µn
n+1

.
The median is a selection problem that requires a more complicated treatment.

The Statistics class was a good example of how getters and setters are used in Object
Oriented Programming in order to hide implementation details.

public class Statistics {

int n = 0; double mean = 0; double ssq = 0;

public void Put(double value){

n++; double oldMean = mean;

mean = oldMean + (value - oldMean) / n;

ssq = ssq + (ssq - oldMean) * (value - mean);

}

public double Mean (){ return mean; }

public double Variance () { if (n==0) return 0; return ssq}

}

5

Hashing

Starting from a data set storing name and telephone number of a friend we discussed
how to provide an object that is capable of storing and quickly retreiving data sets by
some key (such as the name). We started this discussion from the assumption that we
have a computer with unlimited storage capacity and that we can deal with integers of
arbitrary size (a so called \Random Access Machine"). We considered di�erent strategies
to map a name to a storage location in a conceptually unlimited array.

We found a function that indeed maps di�erent names of the form s0s1...sl−1 to
di�erent integers (provided that constant b > 0 is large enough):

hb(s) =
l−1∑
i=0

si � b
i = s0 + s1 � b+ s2 � b+ � � �+ sl−1 � b

b−1

We found out that constraining the outcome of this function to a �nite index domain
introduces the problem of collisions, i.e. the fact that di�erent data sets might be mapped
to the same index location.

We gave the de�nition of hash table and hash function as follows: A hash function
is a mapping from the set of possible key values to the set of possible indices in an array.
A hash table is a data structure where references to the data are stored in an array
together with a hash function that delivers array indices from key values.

Going from there we developed an algorithm to store data sets in a table by carefully
treating collisions. Collisions occur for a hash function h when h(k1) = h(k2) for two
distinct used key values k1, k2. We shortly discussed so called open addressing with
linear probing: if entry i is occupied with a data set of di�ering key value the next
possible entry was chosen in the array adopting wrap-around semantics.

class Friends{

String [] key; // S c h l s s e l

Entry [] data; // Daten

...

int Probe(String k){

int index = Hash(k);

while(key[index] != null && !key[index]. equals(k))

index = (index + 1) % key.length;

return index;

}

}

5 Dynamic Data Structures I

We motivated dynamic data structures with the observation that for arrays it is compu-
tationally expensive to insert or remove elements "in the middle". Linked lists provide a
solution where elements are stored anywhere in memory (and not consecutively as arrays

6

do it). In addition to the key (or value), each list element also stores a pointer to its
successor:

12 99 37

For the implementation of a singly linked list, we introduced a dynamic data structure

class Node

{

double value;

Node next;

Node (double v, Node nxt){

value=v; next = nxt;

}

}

and used it in order to implement stack and queue. We learned that insert and remove
operations require a careful treatment of special cases such as "empty list". Moreover,
we learned how to use a "running pointer" in order to traverse a list. Sorted insertion
requires keeping a reference to the previous element when searching for the insertion
position.

Stepwise Refinement

With stepwise re�nement we discussed a top-down approach to solving programming
problems by formulating rough solutions �rst with comments and �ctitious functions.
The re�nement step comprises of replacing comments by program text and �ctitious
functions by real function de�nitions. As an example we discussed insertion into a
sorted list.

public void Insert (int value)

{

if (first == null || value <= first.value)

first = new Node(value , first);

else {

Node prev = first;

Node v = prev.next;

while (v != null && v.value > value){

prev = v;

v = v.next;

}

prev.next = new Node(value , v);

}

}

Case Study: Point-In-Polygon Algorithm

The Jordan curve theorem implies: in order to identify if a point p is in the inner of a
polygon, it is su�cient to count intersections of the polygon with an arbitrary half-line l

7

starting in p. The main di�culty with implementations arise at the special cases where
l cuts the polygon on its vertices.

We implemented a polygon as a singly linked list of vertices. The PointInPolygon
algorithm was implemented �rstly such that it operated on horizontal lines taking into
account the mentioned special cases. It used
oating point arithmetics. An important
tool used during the implementation of complicated algorithms such as the PointInPoly-
gon algorithm was the consideration of invariants that hold for a polygon.

Motivated by potential ambiguities, lacking computing e�ciency and by the require-
ment to draw the polygon, we discussed line drawing on a pixel grid as an interesting
discretization task. We treated a slightly simpler naive line drawing algorithm to quite
some detail in order to understand the process of discretization. The Bresenham al-
gorithm is a highly e�cient algorithm to draw an arbitrary discretized line on a pixel
grid. It works without
oating point arithmetic. The Bresenham algorithm keeps the
absolute value of err = dx(d − y0) − dy(x − x0) small when advancing in horizontal or
vertical direction.

6 Object Oriented Programming

Motivation: build a graphics library for drawing geometric �gures. A solution with
the procedural approach was sketched and problems were identi�ed: waste of memory
resources, administrative overhead, hindered "non-invasive" code extension.

One key to the solution of such problems is the concept of inheritance: common
properties of �gures can stay in a base class ("generalisation") and distinguishing prop-
erties can be expressed in the inheriting classes ("specialisation"). Inheritance implies
possibility of code reuse operating on common properties. We introduced the notions
base class, inheriting class.

public class Figure {

...

public void draw(BufferenImage img) { }

}

public class Circle extends Figure {

...

public void draw(BufferedImage img) {...} // draw circle

}

public class Rectangle extends Figure {

...

public void draw(BufferedImage img) { ... } // draw rect

}

In order to take the dynamic type of an object into account, the concept of poly-
morphism was introduced. When a method with same type and signature as in the
base class is de�ned in the inheriting class then the method to be executed is chosen at

8

runtime. Object Orientation requires encapsulation, inheritance and polymorphism.

Case Study: Numerical Integration

Objective was the development of a generic software framework for numerical integration
of an arbitrary real valued function. We introduced abstract classes

public abstract class Function {

public abstract double Evaluate(double x);

}

public abstract class Integrator {

int n;

public void SetNumberPieces(int pieces) {

n = pieces;

}

public abstract double Integrate(Function f, double x0 , double x1);

}

and experimented with di�erent functions and integrators by specializing. In the course
we considered the parabola f(x) = x2 and the density of the normal distribution and
applied Rectangle rule, Trapezoidal rule, Simpson rule and aMonte Carlo integrator.
We derived Simpsons's rule and experimentally veri�ed the error terms of O(∆3) for
Rectangle/Trapezoidal rule and and O(∆5) for Simpson Rule.

7 Dynamic Data Structures II

Trees are a natural generalization of lists: nodes have more than one successor. A binary
search tree is a tree of order two with keyx.left < keyx < keyx.right for each node x

public class SearchNode {

int key;

SearchNode left;

SearchNode right;

...

}

key left right

key left right key left right

Insertion in a binary search tree requires tree traversal according to the key order
until an empty child node is found. For node removal several cases have to be considered.
If the node has two non-empty children then it has to be replaced by a symmetric
successor, e.g. the leftmost node in its right subtree.

Search trees can degenerate to linked lists which implies a worst case complexity
O(n). To guarantee O(logn) in worst case, update operations require additional balanc-
ing, which we did not treat in this course.

9

Heaps

A Min-Heap is a binary tree with the Min-Heap property: the key of a child node is
always greater than the key of the parent node. A heap is thus a data structure for fast
retreival of the minimum of a data set. The heap data structure can be easily stored
in an array with indices parent(i) = b(i − 1)/2c and children(i) = {2i + 1, 2i + 2}. In
order to insert an element in a heap, the element is inserted at the �rst free position and
the heap property is ensured by "raising" the element to its proper position. In order to
retreive and delete the minimum element, the root is replaced by the last node and it is
"lowered" until the heap property is reasserted.

The median of a data set can be kept up to date with a worst case update complexity
O(logn) by employing a min- and a max-heap around the median.

Case Study: Dijkstra’s Shortest Path

Given a directed graph provided with positive weights at the edges, objective is �nding
a path with lowest accumulated weights leading from starting point S to end point E.

In order to formulate the iterative algorithm of Dijkstra, we considered
three sets of nodes. M: nodes that are part of a shortest path, initially
M = {S}. R: all nodes not inM that can be reached via one edge from
M and U: all other remaining nodes.

At each update step a node n from R is chosen with minimal path length amongst all
nodes in R. Node n is added to M. Then the neighbours of n are added to R and all
path lengths of elements in R are updated. In the implementation we used a Min-Heap
to store R in order to quickly identify the minimum. During the update step of path
lengths of elements in R it was required to �nd elements in the middle of the heap, which
is why a hash table had to be maintained for the stored elements in a heap.

8 Databases: Entity-Relationship Model

The Entity-Relationship Model provides a means to conceptually model a part of the
world for a database in a graphical way.

It consists of entities and relationships which both can be characterized with at-
tributes. Entities can provide a key attribute that models a unique identi�er of an
identity. Relationships can play roles with respect to entities.

10

An additional tool in modeling relationships is the speci�cation of how many items
may stand in relation to how many other items. Such functionalities are provided in
the form "1:1", "1:N", "N:M" for binary relations, and "1:N:M:..." for n-ary relations. A
functionality containing a "1" somewhere provides the information that the relationship
can be written as a partial function with codomain of the entity type at the "1".

If, for eample, entities e1, e2 and e3 are related as "1:N:1", then their relation is
a subset R � E of the cartesian product of their domains E = E1 � E2 � E3 and can
be understood as both partial function fR : E2 � E3 9 E1 and as partial function gR :
E1 � E2 9 E3. This often helps with the interpretation of relationships.

supervise: professors � students 9 topics
supervise: topics � students 9 professors

9 Databases: Relational Model

Using the relational model a database is described as a collection of relations (tables)
R � D1 � � � � �Dn over domains Di of attributes. A tuple t 2 R constitutes an element
of a relation, i.e. a row in a table. Schemas of such tables are described in the form

{[A1, . . . , An]}

where attributes Ai are usually described in a name:domain form. A key is a minimal
set of attributes that uniquely identi�es a tuple in a relation.

When translating from an ER-Model to a relational model, entity attributes translate
to relation attributes. Key attribute translate to primary keys of relations. When
translating from a relationship, the attributes of all entities together with the attribute
of the relationship form the attributes of the relation

{[A11, . . . , A1n1
, A21, . . . , A2n2

, . . . , Am1, . . . , Amnm , A
R
1 , . . . , A

R
nr
]}

The key of the relation is then formed by all keys of all attributes plus the keys of the
relationship. A renaming of attributes may be necessary.

After entities and relationships have been translated into relations, (only) relations
with the same key can be merged. This implies that relations from N :M relationships
cannot be merged.

11

Professor f[PersNr, Name]g, Vorlesung f[Titel, VorlNr]g, lesen f[PersNr, VorlNr, Raum]g⇒ Professor f[PersNr, Name]g, Vorlesung f[Titel, VorlNr], gelesenVon, Raumg,

We discussed the following operations from relational algebra:

1. Selection operation σp(R) selects tuples (rows) from a relation (table) R that ful�l
the selection predicate p.

2. Projection operation πa(R) projects to the named attributes (columns) a of a
relation (table) R

3. Cartesian product operation R1 � R2 yields all possible pairs r1r2 of tuples of R1
and R2

4. Renaming operation ρS(R) assigns a new name S to a relation R, renaming ρA1→B1(R)
renames an attribute (column) of a relation (table).

5. The Join operation R on S selects tuples from R � S that have equal values on all
attributes with the same names and merges attributes with same names.

6. The Theta-Join operation R onθ S coincides with σθ(R� S).

Although the relational algebra is not used per se in practice, it provides a very
important understanding for databases: queries operate on sets and therefore have to be
perceived as set-valued operations.

10 Databases: SQL

SQL (Structured Query Language) is a language used in order to de�ne, manipulate and
formulate queries on data bases. In terms of querying it provides a mapping of relational
algebra to a formalized natural language.

A typical simple query in SQL looks like

select s.Name , v.Titel

from Studenten s, hoeren h, Vorlesungen v

where s. Legi= h.Legi and h.VorlNr = v.VorlNr

A select statement in SQL corresponds to projection, the from part speci�es (cartesian
product of) participating tables and the where clause provides a selection predicate.

Aggregate functions can be used in order to compute aggregate values over columns
of a table, returning a single value per column. If aggregation is used together with
grouping, it returns a tuple for each group.

select v.gelesenVon , p.Name , sum(v.KP)

from Vorlesungen v, Professoren p

where v.gelesenVon = p.PersNr and p.Rang = ’FP’

group by v.gelesenVon , p.Name

having avg(v.KP) >= 3

12

For nested statements and grouping, it is important to understand possible execution
orders. The previous query is executed as

1. from Vorlesungen, Professoren where gelesenVon = PersNr and Rang = FP

2. group by gelesenVon, Name

3. having avg (KP) >= 3

4. select gelesenVon, Name, sum (KP)

It is possible to use queries in a nested way, i.e. the result of a query can serve as
table within a query.

select c.name from

(

select l.countrycode , l.language , count(l.language)

from countrylanguage l

where l.isofficial = TRUE

group by l.countrycode

having count(l.language)=1

) as p, country c

where p.language = "German" and c.code = p.countrycode

SQL de�nes various data types for typical database entries such as characters, num-
bers, dates, raw data. As Data De�nition Language (DDL), SQL provides statements
such as create table, drop table, alter table. As Data Manipulation Language(DML),
SQL provides statements such as insert into, delete and update.

13

	Introduction
	Java I
	Java II
	Classes
	Dynamic Data Structures I
	Object Oriented Programming
	Dynamic Data Structures II
	Databases: Entity-Relationship Model
	Databases: Relational Model
	Databases: SQL

