
Computer Science II, D-BAUG FS 2015 Assignment 10

Departement of Computer Science Out: 6th of April 2015

ETH Zurich Due: 13th of May 2015

Please download the code for this exercise from http://lec.inf.ethz.ch/baug/informatik2/

2015/ex/Assignment10.zip. We are not using the judge for this exercise. Please mail your TA for

feedback to your solution.

1 Online Median implemented with Heaps

In the lecture you learned about Heaps and how they could be used to implement an Online Me-

dian Heap. On slide 12 of the lecture you can �nd a verbal description of the algorithm. Your

task for the �rst part of this exercise is to implement exactly this algorithm. First study the code

of ArrayHeap.java which you already seen during the lecture. Then complete two functions in

OnlineMedian.java. Start of with

p u b l i c vo i d I n s e r t (doub l e v a l u e) { . . }

Remember that slide 12 of the lecture describes how to code this up. Next you should complete the

method:

p u b l i c doub l e Get () { . . . }

Do not be surprised if your solution for this method is super short - its supposed to be like this. You

can test your Solution by running TestMedian.java

2 Dijkstra's algorithm

Within the second part of this exercise we asked you to implement Dijkstra's shortest path algorithm

that was also introduced in the lecture. While all parts that are needed for the implementation have

been demonstrated in the lecture already, we recommend that you again study

� Edge.java - implementation of an edge of the graph

� Node.java - implementation of a node within the graph

� Heap.java - a heap implementation as seen in previous task. Required for the algorithm

Once you familiarized yourself with the code, you should try to complete the method ShortestPath
inside Graph.java.

Since the code is a bit more involved then most code you have seen so far we basically just made

"holes" in the algorithm and your task is to �ll them again. Use the visual illustration of the algorithm

from the lecture for help. Every ??? inside should only require a single line of code to �ll it. See

next page for the code with the holes. Once you completed the algorithm you can test it by running

TestShortestPath.java.

http://lec.inf.ethz.ch/baug/informatik2/2015
http://lec.inf.ethz.ch/baug/informatik2/2015/ex/Assignment10.zip
http://lec.inf.ethz.ch/baug/informatik2/2015/ex/Assignment10.zip

Vector<Node> Sho r t e s tPa th (Node S , Node E)
{

f o r (i n t i = 0 ; i< nodes . s i z e () ; ++i) //we s t a r t o f by t r a v e r s i n g through a l l nodes
{

Node node = ???
??? // f o r each node update i t s p a t h l e n v a l u e to I n t e g e r .MAX_VALUE
??? //and s e t i t s pa r en t node to n u l l

}

??? // c r e a t e a v e c t o r to s t o r e the path
??? // c r e a t e a Heap to work wi th du r i ng the a l g o r i t hm
??? // s e t the path l e n g t h at the s t a r t n o d e to 0
Node newNode = S ;

wh i l e (newNode != n u l l && newNode != E)
{

Vector<Edge> edges = ??? // get a l l the edges from the newNode

f o r (i n t i = 0 ; i<edges . s i z e () ; ++i) // f o r each o f the edges
{

Edge edge = ??? // take one edge
??? // c a l c u l a t e the l e n g t h the newNode p l u s t h i s edge l e n g t h
??? // get the Node tha t we would r each wi th t h i s edge
??? // get the PathLength tha t node had so f a r (the one we j u s t r eached)
i f (newLength < prevLength) // i f p r e v i o u s i s l o n g e r

// (which i s a lways t r u e i f we d id not v i s i t t ha t node ye t)
{

??? // s e t i t s l e n g t h to the newly c a l c u l a t e d l e n g t h
??? // s e t i t s pa r en t to the node we j u s t came from
i f (p revLength == I n t e g e r .MAX_VALUE) // we d id not s e e t h i s node ye t

??? // t h e r e f o r e we would l i k e to i n s e r t i t to the heap
e l s e

??? // o t h e rw i s e update i t s v a l u e i n the heap
}

}
newNode = ??? //we then con t i nu e by t a k i n g node wi th

// s h o r t e s t path out o f the heap (the r oo t)
//and the s imp l y con t i nu e the l oop from th e r e

}

//now we back t r a ck from the f i n a l node
wh i l e (newNode != n u l l)
{

path . add (newNode) ;
newNode = newNode . GetPathParent () ;

}

r e t u r n path ;
}

	Online Median implemented with Heaps
	Dijkstra's algorithm

