
Computer Science II, D-BAUG FS 2015 Assignment 8

Departement of Computer Science Out: 22th of April 2015
ETH Zurich Due: 29th of April 2015

1 Inheritance applied to �nding roots of a function

For this weeks exercise you will implement a small application mainly from a speci�cation, very similar
to task 3 of the bonus exercise of last week.
We are not using the judge for this exercise - so mail your TA for feedback to your solution. The goal
of this exercise is to implement the Newton method for �nding roots of functions, which you should
be familiar with. In case you need a refresher we forward you to the according Wikipedia article:
Newtons method

1.1 Overview over the classes

Below you �nd a so called UML Diagram of the project. UML is a standard way of drawing the
architecture of software and you might encounter it more often in the course of your education. For
the sake of this exercise its a nice way of illustrating how we expect you to build the application and
should be easy enough to understand. As you can see in the diagram the whole project is supposed to

Figure 1: Class Diagram of the �nal application you should implement

consist of six classes. The only one we give you up front is the class TestNewton which we provide
here: http://lec.inf.ethz.ch/baug/informatik2/2015/ex/ex08/TestNewton.java.
We describe all classes in more detail in the following sections:

1.2 class Function

The main focus of this exercise is to have you use and understand inheritance as you learned in
class. The abstraction which is modeled through inheritance within this exercise is the fact, that we

http://lec.inf.ethz.ch/baug/informatik2/2015
http://en.wikipedia.org/wiki/Newton%27s_method
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://lec.inf.ethz.ch/baug/informatik2/2015/ex/ex08/TestNewton.java

can cluster waves, polynoms and other mathematical functions. We do exactly so by sharing their
common properties in an abstract parent class Function which contains the following methods:

name parameters return remarks

evaluate double double should be abstract since we do not know how to generically
evaluate a function

derivative double double calculates the derivative by using the passed input value and
applying the following formula to it

evaluate(input+0.00000001)−evaluate(input)
0.00000001

print double void an abstract print method that will require every child to imple-
ment a print method

Note that we are making the class and some of its member methods abstract. Making the class
abstract allows us to ensure that only other classes that extend the Function class can be passed,
whenever a Function instance is expected. (as can be seen in the given TestNewton code). It
disallows the creation of a �pure� instance of Function. (e.g. �new Function� would give you a
compile error)

1.3 class Square

This class should extend the abstract class Function. For this class we are happy with the default
implementation of derivative implemented in the parent class Function and therefore do not need
to reimplement it. (Codesharing through inheritance). We do however need to implement the two
abstract methods of the parent class as follows:

name parameters return remarks

evaluate double double return input ∗ input
print double void

System . out . p r i n t (" ("+i npu t+")^2") ;

1.4 class Wave

This class is implemented analogous to Square.

name parameters return remarks

evaluate double double return sin(input) + cos(input)

print double void
System . out . p r i n t (" s i n (" +i npu t+ ") + cos (" +i npu t+ ") ") ;

1.5 class Newton

The class Newton implements the Newton method and consists only of the constructor, which sets
a given accuracy (saved as a member variable accuracy) for the method (when to stop) and the
Newton method itself which can be called with the FindRoot function.

name parameters return remarks

Newton double - the constructor of the class, simply sets the member vari-
able accuracy

FindRoot Function, double double gets the desired function and a starting value passed.
Then applies the Newton method till the value of the
current location converges to a value that is smaller then
accuracy. If this condition is met, it returns the current
position (the root of the function found).

1.6 class Polynomial

The class Polynomial is a bit more involved then the other two classes that inherit from Function
but should still be easy enough to implement. It consists of the following parts

name parameters return remarks

Polynomial double[] - the constructor of the class which takes an array of double num-
bers. Each number represents a Coe�cient of a polynomial.
(meaning it can have di�erent degree depending on the length
of the passed array). The constructor creates a local copy of
the passed array in the member variable coefficients. The
coe�cents are passed in increasing order (e.g. the 0th element
of the passed array is the 0th coe�cent).

evaluate double double calculates the resulting value of a polynomial of the form
coefficent0+coefficent1∗input1+coefficent2∗input2+...

derivative double double calculates the derivative of a polynomial analytically and return
it

print double void custom print method that prints in a loop with

p r i n t (c o e f f i c i e n t s [n] + " * (" + i npu t + ")^" + n) ;

http://en.wikipedia.org/wiki/Coefficient

	Inheritance applied to finding roots of a function
	Overview over the classes
	class Function
	class Square
	class Wave
	class Newton
	class Polynomial

