Computer Science Il, D-BAUG FS 2015 Assignment 6
Departement of Computer Science Out: 18th of March 2015
ETH Zurich Due: 25th of March 2015

1 Battleship game

In this exercise you will implement a simplified version of the widely known game Battleship. We will
not use the judge for this exercise - this allows us to provide you a bigger skeleton project which can
be found here http://lec.inf.ethz.ch/baug/informatik2/2015/ex/Assignment06.zip.

For feedback concerning your exercise please mail your TA’s. (which is always an option - also for
the other exercises)

2 Setting up the project

Download and extract the skeleton from the link above. In Eclipse select File - Import - General -
Existing Projects into Workspace. Navigate to the directory in which you extracted the downloaded
code and select the Assignment06 project. Once finished you should see the project in the package
explorer within eclipse. See figure 2 figure 3 and figure 4.

2.1 Inspect the code

The code is packaged into three subpackages. In a real world project you might not package into
that many packages. Part of the exercise is to get you used to work with packages, which is the main
motivation for this organization.

3 Draw shapes

Your first task is to implement the drawlList method in Shapelist.java

//pre: —

//post: draw all the objects contained in the list
public void drawlList(ImageViewer panel)

{
}

//replace mel

Simply traverse the list and for each polygon contained in it, call its draw method. You can test your
implementation by executing the main method of TestDrawShapes.java

4 Random placement
Now that we are able to draw ships we will focus on placing ships randomly on the game field.

4.1 Random placement with collisions

To get you started, you first have to implement

http://lec.inf.ethz.ch/baug/informatik2/2015
http://en.wikipedia.org/wiki/Battleship_%28game%29
http://lec.inf.ethz.ch/baug/informatik2/2015/ex/Assignment06.zip

//pre: —

//post: insert nr_ships many polygons representing ships into the hidden ships list

// use the "createRandomShipConfig" routine to get a random configuration for your
// ship. watch out that config[2] is the direction

// (used first in Shapes.Ship method)

private void placeRandomShipswCollision(int max_x, int max_y, int nr_ships){ ... }

"Ship polygons" can be created with the static method Shapes.Ship. You can test your implemen-
tation by running the main routine of TestPlacementwithCollision.

4.2 Random placement with collision detection

We would like ships not to overlap. To achieve this we implement a very simple collision detection.

4.2.1 Collision detection

In 1 we sketch a very simple collision algorithm. Everytime checkCollision is called, it will check
if the square described by the coordinates newz and newy of one corner and equal side length
Shapes.mazxgize overlaps with any square described by placementzx[i] and placementy(i] also with
size Shapes.maxgize. When you check for overlap, be aware that in case of the default value an
element of placementx[i|/placementy[i] might be —100.

|
Shapes.max_size

Figure 1: sketch of the simple collision detection

//pre: placementx and placementy hold the info of where ships have been placed so far

// if ships have not been placed yet the according array element will contain —100
// as a default value

//post: true if the square described at position newx,newy (+ Shapes.max_size) does
// collide with any box described by placementx[i], placementy][i]

/] (+ Shapes.max_size)

private boolean checkCollision(int[] placementx, int[] placementy, int newx, int newy)

{ ..}

4.2.2 Placing a ship with collision detection

place Random is supposed to position a single ship. To achieve this create a random config - check if
this config would overlap with any existing ships. If it overlaps just retry till you succeed in finding a
non overlapping config. Once such a config has been found add your placement to placementz|nr]
and placementy[nr| and return a ship polygon with the according config.

//pre: placementx and placementy hold the info of where ships have been placed so far

// if ships have not been placed yet the according array element will contain —100
// as a default value
// parameter nr just tells the number of the ship we currently creating
// max_x and max_y are used for the random Config
//post: added the non overlapping config to placementx[nr] and placementy[nr]
// return a Shapes.Ship with the according config
private Polygon placeRandom(int[] placementx, int[] placementy, int nr,
int max_x, int max_y) { ...}

4.2.3 Creating multiple random ships with collision detection

Finally your task is to complete the function:

//pre: max_x and max_y are used for the random config

// nr_ships is self explanatory

//post: insert nr_ships many ship polygons into the list "hidden ships"
private void placeRandomShips(int max_x, int max_y, int nr_ships) {

Create nr_ships many ship polygons that are not colliding using what you implemented so far.
Everytime you create a ship, insert into the list hidden ships. You can test your implementation
by calling the main method of TestRandomPlacement.java.

5 Game logic

In the last section of this project we implement the game logic of Battleship. The essential part is
that we need to be able to detect if a "shot" hit a ship on the play field.

5.1 Detecting a hit and removal from list

We implement detection and removal in a single operation. You need to traverse the list and for each
element check if calling PointInPolygon(x,y) for the polygon contained in the node returns true.
If so - you are supposed to remove the node from the list and return the polygon. If you do not find
any node for which this is true, return null. For removing a node from a list you need to be aware of
three scenarios (empty list, only one element, more then one element):

first
o |

null

first

o |

first

//pre: x and y describe the coordinate for which we would like to check

// each list element — if the coordinates are contained in the polygon
// described in the nodes

//post: if we find a node, which contains the point,

// remove the node from the list and

// return the polygon that was removed

// if we dont find a node — return null

public Polygon remove(int x, int y) { ...}

5.2 Shooting at a position

The final piece of code is to complete:
//pre: x,y describe the coordinates you want to fire a shot at
//post: always draw a shot at the given coordinates by adding a

// Shapes.Shot to the shots list.

// try to remove from hidden ships list with the remove function you just
// implemented .

// if remove returns a polygon (not null) —> insert it into the hit_ ships
// and return true

// otherwise return false

public boolean shotPosition(int x, int y) { ...}

If you correctly implement shotPosition you can test the whole game by running the main method of
"TestSimulatedPlayer.java" - which will randomly fire at the game field till it hit all ships.
Alternatively you can play the game yourself by executing the main routine of Game.java.

& Java - Assignment065clution/src/game/Board.java - Eclipse |
File] Edit Source Refactor Mavigate Search Project Run

Mew Alt+Shift+M »
Open File...
Close Ctrl+W
Cloze All Ctrl+5Shift+W
Save Ctrl+5

[Save As..
Save All Ctrl+5Shift+5
Revert
Move...
Rename... F2
Refresh F5
Conwvert Line Delimiters To k
Print... Ctrl+P
Switch Workspace *
Restart

= Import.

i Export.

Figure 2: Setting up the project stepl

list

S N el

Select \
| E > ﬂ
Create new projects from an archive file or directory.

Select an import source:

|typeﬁ|ter text |

4 (= General
| Archive File
|®' Existing Projects into Workspace |
[} File System
[T] Preferences

b= CVS

I [= Git

[+ = Install

[(= Maven

[+ (= Run/Debug

[+ (= Tasks

[+ = Team

[= XKML

@ | <Back |[_Net¢>][Finsh | [Cancel

Figure 3: Setting up the project step 2

o N o)

Import Projects

/1y Some projects cannot be imported because they already exist in the E
workspace -

@) Select root directony:

ug'2015\shared\exercises\exdf\assignment Jikd Browse...

() Select archive file: - | | Browsze... |

Projects:

Assignment6 (C:\Phd\S‘VN\informatikZ_dbaug\ZUlS\shared\a(er| Select All ||

Figure 4: Setting up the project step 3

	Battleship game
	Setting up the project
	Inspect the code

	Draw shapes
	Random placement
	Random placement with collisions
	Random placement with collision detection
	Collision detection
	Placing a ship with collision detection
	Creating multiple random ships with collision detection

	Game logic
	Detecting a hit and removal from list
	Shooting at a position

