
Computer Science II, D-BAUG FS 2015 Assignment 6

Departement of Computer Science Out: 18th of March 2015

ETH Zurich Due: 25th of March 2015

1 Battleship game

In this exercise you will implement a simpli�ed version of the widely known game Battleship. We will

not use the judge for this exercise - this allows us to provide you a bigger skeleton project which can

be found here http://lec.inf.ethz.ch/baug/informatik2/2015/ex/Assignment06.zip.

For feedback concerning your exercise please mail your TA's. (which is always an option - also for

the other exercises)

2 Setting up the project

Download and extract the skeleton from the link above. In Eclipse select File - Import - General -

Existing Projects into Workspace. Navigate to the directory in which you extracted the downloaded

code and select the Assignment06 project. Once �nished you should see the project in the package

explorer within eclipse. See �gure 2 �gure 3 and �gure 4.

2.1 Inspect the code

The code is packaged into three subpackages. In a real world project you might not package into

that many packages. Part of the exercise is to get you used to work with packages, which is the main

motivation for this organization.

3 Draw shapes

Your �rst task is to implement the drawList method in ShapeList.java

// pre : −
// pos t : draw a l l the o b j e c t s c on t a i n ed i n the l i s t
p u b l i c vo i d d r awL i s t (ImageViewer pane l)
{

// r e p l a c e me!
}

Simply traverse the list and for each polygon contained in it, call its draw method. You can test your

implementation by executing the main method of TestDrawShapes.java

4 Random placement

Now that we are able to draw ships we will focus on placing ships randomly on the game �eld.

4.1 Random placement with collisions

To get you started, you �rst have to implement

http://lec.inf.ethz.ch/baug/informatik2/2015
http://en.wikipedia.org/wiki/Battleship_%28game%29
http://lec.inf.ethz.ch/baug/informatik2/2015/ex/Assignment06.zip

// pre : −
// pos t : i n s e r t n r_sh ip s many po l ygons r e p r e s e n t i n g s h i p s i n t o the h idden_sh ip s l i s t
// use the " createRandomShipConf ig " r o u t i n e to ge t a random c o n f i g u r a t i o n f o r your
// s h i p . watch out tha t c o n f i g [2] i s the d i r e c t i o n
// (used f i r s t i n Shapes . Sh ip method)
p r i v a t e vo i d p l a c eRandomSh ip swCo l l i s i on (i n t max_x , i n t max_y , i n t n r_sh ip s){ . . . }

"Ship polygons" can be created with the static method Shapes.Ship. You can test your implemen-

tation by running the main routine of TestPlacementwithCollision.

4.2 Random placement with collision detection

We would like ships not to overlap. To achieve this we implement a very simple collision detection.

4.2.1 Collision detection

In 1 we sketch a very simple collision algorithm. Everytime checkCollision is called, it will check

if the square described by the coordinates newx and newy of one corner and equal side length

Shapes.maxsize overlaps with any square described by placementx[i] and placementy[i] also with

size Shapes.maxsize. When you check for overlap, be aware that in case of the default value an

element of placementx[i]/placementy[i] might be −100.

Figure 1: sketch of the simple collision detection

// pre : p lacementx and p lacementy ho ld the i n f o o f where s h i p s have been p l a c ed so f a r
// i f s h i p s have not been p l a c ed ye t the a c co r d i n g a r r a y e l ement w i l l c on t a i n −100
// as a d e f a u l t v a l u e
// pos t : t r u e i f the squa r e d e s c r i b e d at p o s i t i o n newx , newy (+ Shapes . max_size) does
// c o l l i d e w i th any box d e s c r i b e d by p lacementx [i] , p lacementy [i]
// (+ Shapes . max_size)
p r i v a t e boo l ean c h e c k C o l l i s i o n (i n t [] p lacementx , i n t [] p lacementy , i n t newx , i n t newy)
{ . . . }

4.2.2 Placing a ship with collision detection

placeRandom is supposed to position a single ship. To achieve this create a random con�g - check if

this con�g would overlap with any existing ships. If it overlaps just retry till you succeed in �nding a

non overlapping con�g. Once such a con�g has been found add your placement to placementx[nr]
and placementy[nr] and return a ship polygon with the according con�g.

// pre : p lacementx and p lacementy ho ld the i n f o o f where s h i p s have been p l a c ed so f a r
// i f s h i p s have not been p l a c ed ye t the a c co r d i n g a r r a y e l ement w i l l c on t a i n −100
// as a d e f a u l t v a l u e
// paramete r nr j u s t t e l l s the number o f the s h i p we c u r r e n t l y c r e a t i n g
// max_x and max_y a r e used f o r the random Con f i g
// pos t : added the non o v e r l a p p i n g c o n f i g to p lacementx [nr] and p lacementy [nr]
// r e t u r n a Shapes . Sh ip wi th the a c co r d i n g c o n f i g
p r i v a t e Polygon placeRandom (i n t [] p lacementx , i n t [] p lacementy , i n t nr ,

i n t max_x , i n t max_y) { . . . }

4.2.3 Creating multiple random ships with collision detection

Finally your task is to complete the function:

// pre : max_x and max_y a r e used f o r the random co n f i g
// nr_sh ip s i s s e l f e x p l a n a t o r y
// pos t : i n s e r t n r_sh ip s many s h i p po l ygons i n t o the l i s t " h idden_sh ip s "
p r i v a t e vo i d placeRandomShips (i n t max_x , i n t max_y , i n t n r_sh ip s) {

Create nr_ships many ship polygons that are not colliding using what you implemented so far.

Everytime you create a ship, insert into the list hidden_ships. You can test your implementation

by calling the main method of TestRandomPlacement.java.

5 Game logic

In the last section of this project we implement the game logic of Battleship. The essential part is

that we need to be able to detect if a "shot" hit a ship on the play �eld.

5.1 Detecting a hit and removal from list

We implement detection and removal in a single operation. You need to traverse the list and for each

element check if calling PointInPolygon(x, y) for the polygon contained in the node returns true.

If so - you are supposed to remove the node from the list and return the polygon. If you do not �nd

any node for which this is true, return null. For removing a node from a list you need to be aware of

three scenarios (empty list, only one element, more then one element):

�

�rst

null

�

�rst

�

�rst

// pre : x and y d e s c r i b e the c o o r d i n a t e f o r which we would l i k e to check
// each l i s t e l ement − i f the c o o r d i n a t e s a r e con t a i n ed i n the po lygon
// d e s c r i b e d i n the nodes
// pos t : i f we f i n d a node , which c o n t a i n s the po in t ,
// remove the node from the l i s t and
// r e t u r n the po lygon tha t was removed
// i f we dont f i n d a node − r e t u r n n u l l
p u b l i c Polygon remove (i n t x , i n t y) { . . . }

5.2 Shooting at a position

The f i n a l p i e c e o f code i s to complete :
// pre : x , y d e s c r i b e the c o o r d i n a t e s you want to f i r e a sho t at
// pos t : a lways draw a sho t at the g i v en c o o r d i n a t e s by add ing a
// Shapes . Shot to the s ho t s l i s t .
// t r y to remove from h idden_sh ip s l i s t w i th the remove f u n c t i o n you j u s t
// implemented .
// i f remove r e t u r n s a po lygon (not n u l l) −> i n s e r t i t i n t o the h i t_ sh i p s l i s t
// and r e t u r n t r u e
// o t h e rw i s e r e t u r n f a l s e
p u b l i c boo l ean s h o tP o s i t i o n (i n t x , i n t y) { . . . }

If you correctly implement shotPosition you can test the whole game by running the main method of

"TestSimulatedPlayer.java" - which will randomly �re at the game �eld till it hit all ships.

Alternatively you can play the game yourself by executing the main routine of Game.java.

Figure 2: Setting up the project step1

Figure 3: Setting up the project step 2

Figure 4: Setting up the project step 3

	Battleship game
	Setting up the project
	Inspect the code

	Draw shapes
	Random placement
	Random placement with collisions
	Random placement with collision detection
	Collision detection
	Placing a ship with collision detection
	Creating multiple random ships with collision detection

	Game logic
	Detecting a hit and removal from list
	Shooting at a position

