
Computer Science II, D-BAUG FS 2015 Assignment 4

Departement of Computer Science Out: 2th of March 2015

ETH Zurich Due: 11th of March 2015

1 Linear Interpolation

In the course we have discussed the implementation of a pump class providing a relationship between

manometric pressure and �ow rate of a pump using its characteristic curve. Provided was a class with

the following public interface

class Pumpe{

public Pumpe (double [] H, double [] Q)

public double GetH()

public double GetQ()

public double SetH(double H);

public double SetQ(double Q);

}

In addition, the class contains the following private �elds:

private double h, q;

private double [] ha, hq;

In order to accomodate the charcteristic curve we postulated a method

static double Interpolate(double point , double [] in, double [] to)

in the course.

Note that since the method is static, it cannot access the private elements of a class object directly,

but requires them to be passed as arguments. Interpolate �nds the interval in in containing point

and returns the value linearly interpolated between the corresponding indices of to. Implement the

function such that

� if point is smaller than all values of in, it returns the value of to[k] where k is the index of

the smallest element of in,

� if point is greater than all values of in, it returns the value of to[k] where k is the index of

the greatest element of in,

� otherwise it returns the to-value corresponding to point when linearly interpolating to for

indices of the two neighboring points of in

in

to

point

to value of point

(in[0], to[0])
(in[1], to[1])

(in[2], to[2])

(in[3], to[3])

http://lec.inf.ethz.ch/baug/informatik2/2015


Download a skeleton for this assignment from http://lec.inf.ethz.ch/baug/informatik2/

2015/ex/ex04/Pumpe/Main.java

Validate your solution here: https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=

IB1511

Hints

Given are n points on the characteristic curve by two arrays X ∈ Rn (called in above) and Y ∈ Rn

(called to above). With this notation, the linear interpolation problem from above has two aspects:

(a) For a given point x ∈ R, �nd the indices l and r of the two points Xl and Yr that are

closest and left and right from x, i.e. �nd the greatest Xl with Xl ≤ x and the smallest Xr

with Xr ≥ x. If x is smaller than all xi (0 ≤ i < n), then xl is unde�ned. If x is greater than

all xi (0 ≤ i < n) then xr is unde�ned. Note that we did not postulate a particular order for

the entries in X or Y .

(b) Given two indices l and r and x with xl ≤ x ≤ xr, compute the local linear interpolation,

i.e. provide the corresponding point y = yl +
x−xl
xr−xl

· (yr − yl).

Knowing this separation of concerns, you can obviously split the solution of this assignment by solving

(a) and (b) separately. Moreover, we suggest that you implement and test your solution of these

subtasks in separation from anything else. For example write a little class that inputs x, X and Y
and apply the algorithm to your testdata. Only when that works and you are con�dent you did not

miss important cases, integrate it back into the context of this exercise.

2 Selfgrowing Array

By now you've already gained some experience with arrays: once the size of an array is �xed, it cannot

be changed. Any attempt to write to an array index bigger then the size of the allocated array will

cause a java exception. (Error and termination of the program if not handled).

The aim of this assignment is to implement an array of int-numbers, which implements adaptive

growth. The public interface for the growing array is as follows:

class GrowingArray {

// constructor

public GrowingArray ()

// pre: any index ind >= 0

// post: return value at position ind

// If no value has been set to ind previously , return 0

public int get(int ind)

// pre: any index ind >= 0, any value val

// post: store value val at position ind

public void set(int ind , int val)

// post: returns size of currently allocated storage

public int size()

}

By giving the user access via this object's interface (instead of direct access to an array) it is possible

to hide the actual implementationas there are many di�erent possibilities to implement such a dynamic

array. For this exercise, it should be implemented as indicated by the following illustration:

http://lec.inf.ethz.ch/baug/informatik2/2015/ex/ex04/Pumpe/Main.java
http://lec.inf.ethz.ch/baug/informatik2/2015/ex/ex04/Pumpe/Main.java
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1511
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1511


Impression from the outside

Realisation behind the scenes

Next power of two

Growing the array exactly to the size required to host a newly requested element can result in a huge

number of allocations when sequentially traversing and resizing the array. In order to avoid this, the

array should be grown to the next size which is a power of two. So e.g. if the user requests Element

931 we grow the array to size 1024 which corresponds to 210.

Your �rst task is to implement the subroutine that returns the next power of two given any input num-

ber. Download a skeleton for this assignment from http://lec.inf.ethz.ch/baug/informatik2/

2015/ex/ex04/GrowingArray/Main.java

Resize

Finally your task is to implement the routine

private void resize(int size)

which is called within set. As motivated earlier it is supposed to

� create a new array using the NextPowerOfTwo function,

� copy the old (smaller) array into the new array,

� replace the internal storage (called �data� in the skeleton code) with the new storage.

Validate your solution here: https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=

IB1512

http://lec.inf.ethz.ch/baug/informatik2/2015/ex/ex04/GrowingArray/Main.java
http://lec.inf.ethz.ch/baug/informatik2/2015/ex/ex04/GrowingArray/Main.java
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1512
https://judge.inf.ethz.ch/team/websubmit.php?cid=60&problem=IB1512

	Linear Interpolation
	Selfgrowing Array

