Educational Objectives

12. Recursion

m You understand how a solution to a recursive problem can
be implemented in Java.

m You understand how methods are being executed in an
execution stack.

Mathematical Recursion, Termination, Call Stack, Examples,
Recursion vs. Iteration, Lindenmayer Systems

305 306

Mathematical Recursion Recursion in Java:
m Many mathematical functions can be naturally defined nl — L, itn <1
recursively. n-(n—1)!, otherwise

m The means, the function appears in its own definition

// POST: return value is n!

1 ifn<l1l public static int fac (int n) {
n!l =" — if (n <= 1)
n - (Tl-—'l)!, OtllerViSG return 1;
else

return n * fac (n-1);

307



Infinite Recursion

m is as bad as an infinite loop...

...but even worse: it burns time and memory

private static void f() {
£QO; // £O -> £ -> ... stack overflow

}

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
public static int fac (int n) {

}

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

Initialization of the formal argument: n = 4
recursive call with argumentn — 1 ==

309

3n

Recursive Functions: Termination

As with loops we need
m progress towards termination

fac(n):
terminates immediately for n < 1, otherwise the function is
called recusively with < n .

,N is getting smaller with each call”

310

The Call Stack

ln= 1 =1]
fac(1) 1
For each method call: +
n=2 2.1 = 2]
m push value of the actual parameter x
on the stack fac(2) 12
m work with the upper most value [n=3 _ 3-21=
m at the end of the call the upper fac(3) 16
most value is removed from the n=14 4.3 = 24]
stack fac(a) | 2%

Out.println(fac(4))

312



Euclidean Algorithm

m finds the greatest common divisor ged(a, b) of two natural
numbers a and b

m is based on the following mathematical recursion:

a, falls b =0
ged(a, b) =
ged(b, a mod b), andernfalls

313

Fibonacci Numbers

0, fallsn =0
F, =11, falls n =1
F, 1+ F, 5 fallsn>1

0,1,1,2,3,5,8,13,21,34,55,89.. . .

315

Euclidean Algorithm in Java

a, falls b =0

ged(a, b) =
ged (b, a mod b), andernfalls

public static int ged (int a, int b) {

if (b == 0) Termination: @ mod b < b, thus b
return a; is decreased for each recursive
else call.
return gcd (b, a % b);
} 314

Fibonacci Numbers in Java

Laufzeit

fib(50) takes “forever” because it computes

Fys two times, Fy; 3 times, Fyg 5 times, Fy5 8 times, Fyy 13 times,
Fy3 21times ... Fy ca. 10° times (1)

public static int fib (int n) {
if (n == 0) return O;
if (n == 1) return 1; und
Terminierung
return fib (n-1) + fib (n-2); // n > 1 ndklar
}

Korrektheit

317



Fast Fibonacci Numbers

ldea:

m Compute each Fibonacci number only once, in the order
Fo, F1, Fs, ... F)!

m Memorize the most recent two numbers (variables a and b)!

m Compute the next number as a sum of a and b!

318

Recursion and lteration

Recursion can always be simulated by
m Iteration (loops)
m explicit “call stack” (e.g. array)

Often recursive formulations are simpler, sometimes they are
less efficient

320

Fast Fibonacci Numbers in Java

public static int fib (int n){
if (n == 0) return 0;
if (n <= 2) return 1;
int a=1; // F_1
int b = // F.2
for (int i = 3; i <= n; ++i){
int a_old = a; // F_i-2

very fast, also for £ib(50)

|
-
w.

a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i
}
return b; (E_Q’ Fi_l) — (Fi_l’ E)
) M\
d b 319

The Power of Recursion

m Some problems appear to be hard to solve without
recursion. With recursion they become significantly simpler.

m Examples: The towers of Hanoi, The n-Queens-Problem,
Sudoku-Solver, Expression Parsers, Reversing In- or Output,
Searching in Trees, Divide-And-Conquer (e.g. sorting) —
Informatik I,

321



Experiment: The Towers of Hanoi The Towers of Hanoi - Code

8 .
C ) .
. _—

0 1 2

- Move 4 discs vom 0 to 2 with auxiliary staple 1

Links Mitte Rechts move(4, 0, 1, 2);

322 327

The Towers of Hanoi — Code The Towers of Hanoi — Code

move (4’ 0, 1, 2); public static void move(int n, int source, int aux, int «
== if (n==1){
Out.println("move " + source + "->" + dest);
1. Move 3 discs from 0 to 1 with auxiliary staple 2: } else {

move(n-1, source, dest, aux);
move (1, source, aux, dest);
move(n-1, aux, source, dest);

}

move(3, 0, 2, 1);
2. Move 1disc from 0 to 2
move(l, 0, 1, 2);
3. Move 3 discs from 1to 2 with auxiliary staple 0
move(3, 1, 0, 2); ¥

328 329



