
12. Recursion
Mathematical Recursion, Termination, Call Stack, Examples,
Recursion vs. Iteration, Lindenmayer Systems

305

Educational Objectives

You understand how a solution to a recursive problem can
be implemented in Java.
You understand how methods are being executed in an
execution stack.

306

Mathematical Recursion

Many mathematical functions can be naturally de�ned
recursively.
The means, the function appears in its own de�nition

n! =




1, if n ≤ 1
n · (n− 1)!, otherwise

307

Recursion in Java:

n! =




1, if n ≤ 1
n · (n− 1)!, otherwise

// POST: return value is n!
public static int fac (int n) {
if (n <= 1)

return 1;
else

return n * fac (n-1);
}

308



In�nite Recursion

is as bad as an in�nite loop. . .
. . . but even worse: it burns time and memory

private static void f() {
f(); // f() -> f() -> ... stack overflow

}

309

Recursive Functions: Termination

As with loops we need
progress towards termination

fac(n):
terminates immediately for n ≤ 1, otherwise the function is
called recusively with < n .

„n is getting smaller with each call.”

310

Recursive Functions: Evaluation
Example: fac(4)
// POST: return value is n!
public static int fac (int n) {

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Initialization of the formal argument: n = 4
recursive call with argument n− 1 == 3

311

The Call Stack

For each method call:
push value of the actual parameter
on the stack
work with the upper most value
at the end of the call the upper
most value is removed from the
stack

Out.println(fac(4))

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24
fac(4)

fac(3)

fac(2)

fac(1) 1

2

6

24

312



Euclidean Algorithm

�nds the greatest common divisor gcd(a, b) of two natural
numbers a and b

is based on the following mathematical recursion:

gcd(a, b) =




a, falls b = 0
gcd(b, a mod b), andernfalls

313

Euclidean Algorithm in Java

gcd(a, b) =




a, falls b = 0
gcd(b, a mod b), andernfalls

public static int gcd (int a, int b) {
if (b == 0)

return a;
else

return gcd (b, a % b);
}

Termination: a mod b < b, thus b
is decreased for each recursive
call.

314

Fibonacci Numbers

Fn :=





0, falls n = 0
1, falls n = 1
Fn−1 + Fn−2, falls n > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . .
315

Fibonacci Numbers in Java

Laufzeit
fib(50) takes “forever” because it computes
F48 two times, F47 3 times, F46 5 times, F45 8 times, F44 13 times,
F43 21 times ... F1 ca. 109 times (!)

public static int fib (int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return fib (n-1) + fib (n-2); // n > 1

}

Korrektheit
und
Terminierung
sind klar.

317



Fast Fibonacci Numbers

Idea:
Compute each Fibonacci number only once, in the order
F0, F1, F2, . . . , Fn!
Memorize the most recent two numbers (variables a and b)!
Compute the next number as a sum of a and b!

318

Fast Fibonacci Numbers in Java
public static int fib (int n){

if (n == 0) return 0;
if (n <= 2) return 1;
int a = 1; // F_1
int b = 1; // F_2
for (int i = 3; i <= n; ++i){

int a_old = a; // F_i-2
a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i

}
return b;

}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b

very fast, also for fib(50)

319

Recursion and Iteration

Recursion can always be simulated by
Iteration (loops)
explicit “call stack” (e.g. array)

Often recursive formulations are simpler, sometimes they are
less e�cient

320

The Power of Recursion

Some problems appear to be hard to solve without
recursion. With recursion they become signi�cantly simpler.
Examples: The towers of Hanoi, The n-Queens-Problem,
Sudoku-Solver, Expression Parsers, Reversing In- or Output,
Searching in Trees, Divide-And-Conquer (e.g. sorting)→
Informatik II,

321



Experiment: The Towers of Hanoi

Links Mitte Rechts
322

The Towers of Hanoi – Code

0 1 2

Move 4 discs vom 0 to 2 with auxiliary staple 1:

move(4, 0, 1, 2);
327

The Towers of Hanoi – Code

move(4, 0, 1, 2);
==

1. Move 3 discs from 0 to 1 with auxiliary staple 2:
move(3, 0, 2, 1);

2. Move 1 disc from 0 to 2
move(1, 0, 1, 2);

3. Move 3 discs from 1 to 2 with auxiliary staple 0
move(3, 1, 0, 2);

328

The Towers of Hanoi – Code

public static void move(int n, int source, int aux, int dest){
if (n==1){

Out.println("move " + source + "->" + dest);
} else {

move(n-1, source, dest, aux);
move(1, source, aux, dest);
move(n-1, aux, source, dest);

}
}

329


