
3. Java - Language Constructs I

Names and Identi�ers, Variables, Assignments, Constants,
Datatypes, Operations, Evaluation of Expressions, Type
Conversions

54

Educational Objectives
You know the basic blocks of the programming language
Java
You understand the use of variables in a program and you
can use them properly
You know how values are de�ned in the source code
(literals)
You are able to read and interpret simple arithmetic
expressions
You understand the reasons for a type system and are able
to determine the type of an expression

55

De�nition: Names and Identi�ers

Names denote entities in a program like variables, constants,
types, methods, or classes.

Book on page 21

56

Names and Identi�ers

Allowed names for entities in a program:
Names begin with a letter or the symbols _ or $
Then, optionally, a sequence of letters, numbers or the
symbols _ or $

57

Names - what is allowed

_myName

TheCure

__AN$WE4_1S_42__

$bling$

me@home

49ers

side-swipe

Ph.D’s

strictfp ?!

58

Keywords
The following words are already used by the language and
cannot be used as names:

abstract continue for new switch
assert default goto package synchronized
boolean do if private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while

59

De�nition: Variables

Variables are buckets for values and have a speci�ed type.
Variables need to be declared before �rst use.

Book on page 23

60

Variables
Variables are buckets for a value
Have a data type and a name
The data type determines what kind of values are allowed
in the variable

23

int x

42

int y

0.0f

float f

’a’

char c
Declaration in Java:
int x = 23, y = 42;
float f;
char c = ’a’;

Initialization
61

De�nition: Constants

Constants are variables that are initialized upon declaration
and may not change their value later on.

Book on page 35

62

Constants

Keyword final
The value of the variable can be set exactly once

final int maxSize = 100;

Hint: Always use final, unless the value actually needs to
change over time.

63

De�nition: Types

A Type de�nes a set of values that belong to the type as well
as a set of operations that can be performed with the values
of the type.

Book on page 24

64

De�nition: Standard Types

Java provides several prede�ned types for various numeric
ranges as well as boolean values and strings.

Book on page 24

65

Standard Types
Data Type De�nition Value Range Initial Value
byte 8-bit integer −128, . . . , 127 0
short 16-bit integer −32′768, . . . , 32′767 0
int 32-bit integer −231, . . . , 231 − 1 0
long 64-bit integer −263, . . . , 263 − 1 0L

float 32-bit �oating point ±1.4E−45, . . . ,±3.4E+38 0.0f
double 64-bit �oating point ±4.9E−324, . . . ,±1.7E+308 0.0d

boolean logical value true, false false

char unicode-16 character ’\u0000’ ,. . . ,’a’ ,’b’ ,. . . ,’\uFFFF’ ’\u0000’
String string ∞ null

66

Types and Memory Usage
Reminder: Memory cells contain 1 Byte = 8 bit

byte
boolean

short, char

int, float

long, double

67

De�nition: Literals

Representation of a value of a standard type in the source
code.

Book on page 22 - 23

68

Literals: Integer Numbers

Type int (or short, byte)

12 : value 12
-3 : value −3

Type long

25_872_224L : value 25′872′224

Hint: Underscores between digits are allowed!
69

Literals: Floating Point Numbers
are di�erent from integers by providing
decimal comma

1.0 : type double, value 1
1.27f : type float, value 1.27

and/or exponent.

1e3 : type double, value 1000
1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

70

Literals: Characters and Strings
Characters are put into single quotes

’a’ : Type char, value 97

Strings are put into double quotes:

"Hello There!" : Type String
"a" : Type String

Mind: Characters and Strings are two di�erent things!
71

Character: In ASCII Table

72

De�nition: Assignments

An assignment is used to store a (computed) value into a
variable.

Book on page 27

73

Value Assignment

In pseudo code: x← value
In Java: x = value

Copies a value into variable x

value value

x

(copy)

“=” is the assignment operator and not a comparison!
Therefore, int y = 42 is both a declaration + an assignment.

74

Value Assignment - Example

int a = 3;
double b;

b = 3.141;

int c = a = 0;

String name = "Inf";

A nested assignment:
The expression a = 0 stores the
value 0 into variable a. and then
returns the value

75

De�nition: Arithmetic Expressions

An arithmetic expression consists of operands and operators
and computes a numeric value of a given type.

Book on page 28

76

Arithmetic Binary Operators

In�x notation: x op y with the following operators

op: + − * / %

modulo

77

Arithmetic Binary Operators

Division x / y: Integer division if x and y are integer.
Division x / y: Floating-point division if x or y is a
�oating-poing number!

Integer division and modulo

5 / 3 evaluates to 1 -5 / 3 evaluates to -1
5 % 3 evaluates to 2 -5 % 3 evaluates to -2

78

Arithmetic Assignment

x = x + y

m
x += y

x -= 3; // x = x - 3
name += "x" // name = name + "x"
num *= 2; // num = num * 2

Analogous for -, *, /, %

79

Arithmetic Unary Operators

Pre�x notation: + x or - x

Assuming x is 3
2 * -x evaluates to -6
-x - +1 evaluates to -4

80

Increment/Decrement Operators
Increment operators ++x and x++ have the same e�ect:
x← x + 1.But di�erent return values:

Pre�x operator ++x returns the new value:

a = ++x; ⇐⇒ x = x + 1; a = x;

Post�x operator x++ returns the old value:
a = x++; ⇐⇒ temp = x; x = x + 1; a= temp;

Analogous for x-- and --x.
81

Increment Operator - Example

Assuming x is initially set to 2
y = ++x * 3 evaluates to: x is 3 and y is 9
y = x++ * 3 evaluates to: x is 3 and y is 6

82

Expressions

represent computations
are either primary
or composed . . .
. . . from other expressions, using operators
are statically typed

Analogy: Construction kit

83

Expressions - Example

primary: “-4.1d” or “x” or "Hi"

composed: “x + y” or “f * 2.1f”

The type of “12 * 2.1f” is float

84

Celsius to Fahrenheit

public class Main {
public static void main(String[] args) {

Out.print("Celsius: ");
float celsius = In.readFloat();
float fahrenheit = 9 * celsius / 5 + 32;
Out.println("Fahrenheit: " + fahrenheit);

}
}

15◦ Celsius are 59◦ Fahrenheit

85

Celsius to Fahrenheit - Analysis

9 * celsius / 5 + 32

Arithmetic expression,
contains three literals, one variable, three operator symbols

three literals, one variable, three operator symbols

Where are the brackets in this expression?

86

Rule 1: Precedence

Multiplicative operators (*, /, %) have a higher precedence
("bind stronger") than additive operators (+, -).

9 * celsius / 5 + 32

means

(9 * celsius / 5) + 32

87

Rule 2: Associativity

Arithmetic operators (*, /, %, +, -) are left-associative: in case
of the same precedence, the evaluation happens from left to
right.

9 * celsius / 5 + 32

means

((9 * celsius) / 5) + 32

88

Rule 3: Arity

Unary operators +, - before binary operators +, -.

9 * celsius / + 5 + 32

means

9 * celsius / (+5) + 32

89

Bracketing

Any expression can be bracketed unambiguously using the
associativities
precedences
arities (number of operands)

of the involved operators.

90

Expression Trees
Bracketing leads to an expression tree

(((9 * celsius) / 5) + 32)

+

/

*

9 celsius 5 32

91

Evaluation Order
“From leafs to the root” in the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

92

Expression Trees – Notation
Usual notation: root on top

9 * celsius / 5 + 32

+

/

*

9 celsius

5

32

93

De�nition: Type System

A type system is a set of rules that are applied to the di�erent
constructs of the language.

Book on page 24

94

Type System

Java festures a static type system:
All types must be declared
If possible, the compiler checks the typing . . .
. . . otherwise it’s checked at run-time

Advantages of a static type system
Fail-fast Bugs in the program are often found already by the
compiler
Understandable code

95

Type errors - by Example

int pi_ish;
float pi = 3.14f;

pi_ish = pi;

Compiler error:
./Root/Main.java:12: error: incompatible types: possible lossy conversion

from float to int
pi_ish = pi;

^

96

Explicit Type Conversion

int pi_ish;
float pi = 3.14f;

pi_ish = (int) pi;

Explicit type conversion using casts (type)
Statically type-correct, compiler is happy
Run-time behavior: depends on the situation
Here: loss of precision: 3.14⇒ 3

Can crash a program at run-time
97

Type Conversion - Visually

byte

short

int

long

ex
pl
ic
it
ca
st

im
plicitconversion

Potential loss of information when casting explicitly, because less memory
available to represent the number

98

De�nition: Mixed Expressions

A mixed expression consists of operands of di�erent types.

Book on page 70

99

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to �oating
point numbers.

9 * celsius / 5 + 32

100

Type Conversions for Binary Operations

Numeric operands in a binary operation are being converted
according to the following rules:
If both operands have the same type, no conversion will happen

If one operand is double, the other operand is converted to double as
well

If one operand is float, the other operand is converted to float as well

If one operand is long, the other operand is converted to long as well

Otherwise: Both operands are being converted to int

101

