
18. Java Input/Output

User Input/Console Output, File Input and Output (I/O)

472

User Input (half the truth)

e.g. reading a number: int i = In.readInt();
Our class In provides various such methods.
Some of those methods have to deal with wrong inputs:
What happens with readInt() for the following input?

"spam"

473

User Input (half the truth)
public class Main {

public static void main(String[] args) {
Out.print("Number: ");
int i = In.readInt();
Out.print("Your number: " + i);

}
}
It seems not much happens!
Number: spam
Your number: 0

474

User Input (the whole truth)
e.g. reading a number using the class Scanner

import java.util.Scanner;
public class Main {

public static void main(String[] args) {
Out.print("Number: ");
Scanner input = new Scanner(System.in);
int i = input.nextInt();
Out.print("Your number: " + i);

}
}
What happens for the following input?
"spam"

475

User Input (the whole truth)

Number: spam
Exception in thread "main" java.util.InputMismatchException

at java.base/java.util.Scanner.throwFor(Scanner.java:939)
at java.base/java.util.Scanner.next(Scanner.java:1594)
at java.base/java.util.Scanner.nextInt(Scanner.java:2258)
at java.base/java.util.Scanner.nextInt(Scanner.java:2212)
at Main.main(Main.java:7)
at TestRunner.main(TestRunner.java:330)

Oh, we come back to this in the next chapter...

476

Console Output
Until now, you knew: Out.print("Hi") oder
Out.println("Hi")
Without our Out class:

System.out.print("The answer is: ");
System.out.println(42);
System.out.println("What was the question?!");

This leads to the following output:
The answer is: 42
What was the question?!

477

So: User Input/Console Output

Reading of input via the input stream System.in
Writing of output via output stream System.out

478

Reading/Writing Files (line by line)

Files can be read byte by byte using the class
java.io.FileReader
To read entire lines, we use in addition a
java.io.BufferedReader
Files can be written byte by byte using the class
java.io.FileWriter
To read entire lines, we use in addition a
java.io.BufferedWriter

479

Reading Files (line by line)
import java.io.FileReader;
import java.io.BufferedReader;

public class Main {
public static void main(String[] args) {

FileReader fr = new FileReader("gedicht.txt");
BufferedReader bufr = new BufferedReader(fr);
String line;
while ((line = bufr.readLine()) != null){

System.out.println(line);
}

}
}

480

Reading Files (line by line)
We get the following compilation error:
./Main.java:6: error: unreported exception FileNotFoundException;

must be caught or declared to be thrown
FileReader fr = new FileReader("gedicht.txt");

^
./Main.java:9: error: unreported exception IOException; must be

caught or declared to be thrown
while ((line = bufr.readLine()) != null){

^
2 errors

It seems we need to understand more about the topic
“Exceptions”

481

... therefore ...

482

19. Errors and Exceptions

Errors, runtime-exceptions, checked-exceptions, exception
handling, special case: resources

483

Errors and Exceptions in Java

Exceptions are bad, or not?

Errors and exceptions interrupt the
normal execution of the program abruptly
and represent an unplanned event.

Java allows to catch such events and deal with it (as opposed to
crashing the entire program)

Unhandled errors and exceptions are passed up through the call stack.

484

Errors

This glass is broken for good

Errors happen in the virtual machine
of Java and are not repairable.

Examples

No more memory available

Too high call stack (→ recursion)

Missing libraries

Bug in the virtual machine

Hardware error
485

Exceptions
Exceptions are triggered by the virtual machine or the
program itself and can typically be handled in order to
re-establish the normal situation

Clean-up and pour in a new glass

Examples

De-reference null

Division by zero

Read/write errors (on
�les)

Errors in business logic
486

Exception Types

Runtime Exceptions

Can happen anywhere

Can be handled

Cause: bug in the code

Checked Exceptions

Must be declared

Must be handled

Cause: Unlikely but not
impossible event

487

Example of a Runtime Exception
1 import java.util.Scanner;
2 class ReadTest {
3 public static void main(String[] args){
4 int i = readInt("Number");
5 }
6 private static int readInt(String prompt){
7 System.out.print(prompt + ": ");
8 Scanner input = new Scanner(System.in);
9 return input.nextInt();

10 }
11 }

Input: Number: asdf 488

Unhandled Errors and Exceptions

The program crashes and leaves behind a stack trace. In
there, we can see the where the program got interrupted.
Exception in thread "main" java.util.InputMismatchException

[...]
at java.util.Scanner.nextInt(Scanner.java:2076)
at ReadTest.readInt(ReadTest.java:9)
at ReadTest.main(ReadTest.java:4)

⇒ Forensic investigation based on this information.

489

Exception gets Propagated through Call
Stack

Java VM Runtime

ReadTest.main

ReadTest.main();

ReadTest.readInt

int i = readInt("Number");

Scanner.nextInt

return input.nextInt();

88

88

88

=

490

Unstanding Stack Traces

Output:
Exception in thread "main" java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:864)
at java.util.Scanner.next(Scanner.java:1485)
at java.util.Scanner.nextInt(Scanner.java:2117)
at java.util.Scanner.nextInt(Scanner.java:2076)
at ReadTest.readInt(ReadTest.java:9)
at ReadTest.main(ReadTest.java:4)

An unsuited input ...

... in method readInt on line 9 ...

... called by method main on line 4. 491

Unstanding Stack Traces

1 import java.util.Scanner;
2 class ReadTest {
3 public static void main(String[] args){
4 int i = readInt("Number");
5 }
6 private static int readInt(String prompt){
7 System.out.print(prompt + ": ");
8 Scanner input = new Scanner(System.in);
9 return input.nextInt();

10 }
11 }

at ReadTest.readInt(ReadTest.java:9)
at ReadTest.main(ReadTest.java:4)
at ReadTest.readInt(ReadTest.java:9)
at ReadTest.main(ReadTest.java:4)

492

Runtime Exception: Bug in the Code?!
Where is the bug?

private static int readInt(String prompt){
System.out.print(prompt + ": ");
Scanner input = new Scanner(System.in);
return input.nextInt();

}

Not guaranteed that the next input is an int

⇒ The scanner class provides a test for this
493

Runtime Exception: Bug Fix!
Check �rst!

private static int readInt(String prompt){
System.out.print(prompt + ": ");
Scanner input = new Scanner(System.in);
if (input.hasNextInt()){

return input.nextInt();
} else {

return 0; // or do something else ...?!
}

}
494

First Finding: often no Exceptional Situa-
tion
Often, those “exceptional” cases aren’t that unusual, but
pretty foreseeable. In those cases no exceptions should be
used!

Kids are tipping over cups. You get
used to it.

Examples

Wrong credentials when logging in

Empty required �elds in forms

Unavailable internet resources

Timeouts
495

Second Finding: Avoid Exceptions

Problem solved.

Instead of letting a runtime exception happen,
actively prevent such a situation to arise.

Examples

Check user inputs early

Use optional types

Predict timeout situations

Plan B for unavailable resources

496

Exception Types

Runtime Exceptions

Can happen anywhere

Can be handled

Cause: bug in the code

Checked Exceptions

Must be declared

Must be handled

Cause: Unlikely but not
impossible event

497

Example of a Checked Exception
private static String[] readFile(String filename){

FileReader fr = new FileReader(filename);
BufferedReader bufr = new BufferedReader(fr);
...
line = bufr.readLine();
...

}

Compiler Error:
./Root/Main.java:9: error: unreported exception FileNotFoundException; must be caught or declared to be thrown

FileReader fr = new FileReader(filename);
^

./Root/Main.java:11: error: unreported exception IOException; must be caught or declared to be thrown
String line = bufr.readLine();

^
2 errors 498

Quick Look into Javadoc

499

Why use Checked Exceptions?

The following situations justify checked exception:
Fault is unprobable but not impossibe – and can be �xed
by taking suitable measures at runtime.

The caller of a method with a declared checked exception is
forced to deal with it – catch it or pass it up.

500

Handling Exceptions
private static String[] readFile(String filename){

try{
FileReader fr = new FileReader(filename);
BufferedReader bufr = new BufferedReader(fr);
...
line = bufr.readLine();
...

} catch (IOException e){
// do some recovery handling

} finally {
// close resources

}
}

Protected
scope

Measures to re-establis the
normal situation

Gets executed in any case,
at the end, always!

501

Handling Exceptions: Stop Propagation!

Java VM Runtime

ReadTest.main

ReadTest.main();

ReadTest.readFile

lines = readFile("dataset.csv");

BufferedReader.readLine

line = bufr.readLine();

88

4
Exception caught!

502

Finally: Closing Resources

In Java, resources must be closed after use at all costs.
Otherwise, memory won’t get freed.
Resources:
Files
Data streams
UI elements
. . .

503

Try-With-Resources Statement
Speci�c syntax to close resources automatically:
private static String[] readFile(String filename){

try (FileReader fr = new FileReader(filename);
BufferedReader bufr = new BufferedReader(fr)) {

...
line = bufr.readLine();
...

} catch (IOException e){
// do some recovery handling

}
}

Resources get
opened here

Resources get closed automatically here

504

