
Hermann Lehner, Felix Friedrich

Computer Science I
Course at D-BAUG at ETH Zurich
Autumn 2019

1. Introduction
Welcome to the Lecture Series!

https://www.mentimeter.com/s/54775dbcef2827005cfcaa8e80bff221

1

Mathematics used to be the lingua franca of the natural sciences
on all universities. Today this is computer science.

Lino Guzzella, president of ETH Zurich 2015-2018, NZZ Online, 1.9.2017

((BTW: Lino Guzzella is not a computer scientist, he is a mechanical engineer and prof. for thermotronics )

2

Programming and Problem Solving

In this course you learn how to program using Java
Software development is a handicraft
Analogy: learn to play a musical instrument
The problem: nobody has become a pianist from listening to music.

Hence this course o�ers several possibilities, to train. Make use of it!

3



Programming and problem solving

In this course you learn to solve problems with selected algorithms and
data structures
Fundamental knowledge independent of the language
Comparison: musical scale, read music, rythm skills.
The problem: without musical instrument this is no fun.

Hence we combine learning problem solving with learning the
programming language Java.

4

Course Content

Programming using Java
introduction

statements and expressions
number representations

control �ow

arrays
methods and recursion

types, classes and objects
inheritance and polymorphy

Algorithmen
Searching and Sorting

5

Goal of today’s Lecture

Introduction of computer model and algorithms
Writing a �rst program
General informations to the course

6

1.1 Computer Science and Algorithms

Computer Science, Euclidean Algorithm

7



Algorithm: Fundamental Notion of Computer Sci-
ence
Algorithm:
Instructions to solve a problem step by step
Execution does not require any intelligence, but precision (even
computers can do it)
according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

“Dixit algorizmi. . . ” (Latin translation)

ht
tp

:/
/d

e.
wi

ki
pe

di
a.

or
g/

wi
ki

/A
lg

or
it

hm
us

8

Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

Input: integers a > 0, b > 0
Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a.

a b a b a b a b 9

Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe
zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Programmcode Daten

Links

b

Rechts

a

Register

Daten
While b 6= 0

If a > b then
a← a− b

else:
b← b− a

Ergebnis: a.

10

1.2 Computer Model

Turing Machine, Von Neumann Architecture

11



Computers – Concept

An bright idea: universal Turing machine (Alan Turing, 1936)

Alan Turing

ht
tp

:/
/e

n.
wi

ki
pe

di
a.

or
g/

wi
ki

/A
la

n_
Tu

ri
ng

12

Computer – Implementation

Z1 – Konrad Zuse (1938)
ENIAC – John Von Neumann (1945)

Konrad Zuse

John von Neumann

ht
tp

:/
/w

ww
.h

s.
un

i-
ha

mb
ur

g.
de

/D
E/

GN
T/

hh
/b

io
gr

/z
us

e.
ht

m
ht

tp
:/

/c
om

mo
ns

.w
ik

im
ed

ia
.o

rg
/w

ik
i/

Fi
le

:J
oh

n_
vo

n_
Ne

um
an

n.
jp

g

13

Computer

Ingredients of a Von Neumann Architecture
Memory (RAM) for programs and data
Processor (CPU) to process programs and data
I/O components to communicate with the world

14

Memory for data and program

Sequence of bits from {0, 1}.
Program state: value of all bits.
Aggregation of bits to memory cells (often: 8 Bits = 1 Byte)
Every memory cell has an address.
Random access: access time to the memory cell is (nearly) independent
of its address.

15



Processor

The processor (CPU)
executes instructions in machine language
has an own "fast" memory (registers)
can read from and write to main memory
features a set of simplest operations = instructions (e.g. adding to
register values)

16

Computing speed

In the time, onaverage, that the sound takes to travel from from my mouth
to you ...

30 m =̂ more than 100.000.000 instructions

a contemporary desktop PC can process more than 100 millions
instructions 1

1Uniprocessor computer at 1 GHz.
17

Programming

With a programming language we issue commands to a computer such
that it does exactly what we want.
The sequence of instructions is the
(computer) program

The Harvard Computers, human computers, ca.1890

ht
tp

:/
/e

n.
wi

ki
pe

di
a.

or
g/

wi
ki

/H
ar

va
rd

_C
om

pu
te

rs

18

Programming Languages

The language that the computer can understand (machine language) is
very primitive.
Simple operations have to be disassembled into many single steps
The machine language varies between computers.

19



Higher Programming Languages

can be represented as program text that
can be understood by humans
is independent of the computer model
→ Abstraction!

20

Java

is based on a virtual machine (with von-Neumann architecture)
Program code is translated into intermediate code
Intermediate code runs in a simulated computing envrionment, the
intermediate code is executed by an interpreted
Optimisation: Just-In-Time (JIT) compilation of frequently used code:
virtual machine→ physical machine

Consequence, and manifested goal of the Java developers: portability

write once – run anywhere

21

2. Introduction to Java

Programming – a �rst Java Program

22

Programming Tools

Editor: Program to modify, edit and store Java program texts
Compiler: program to translate a program text into machine language
Computer: machine to execute machine language programs
Operating System: program to organize all procedures such as �le
handling, editor-, compiler- and program execution.

23



German vs. Programming Language

Deutsch
Es ist nicht genug zu wissen,
man muss auch anwenden.
(Johann Wolfgang von Goethe)

Java / C / C++

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

24

Syntax and Semantics

Like our language, programs have to be formed according to certain
rules.

Syntax: Connection rules for elementary symbols (characters)
Semantics: interpretation rules for connected symbols.

Corresponding rules for a computer program are simpler but also more
strict because computers are relatively stupid.

25

Syntax and Semantics of Java

Syntax
What is a Java program?
Is it grammatically correct?

Semantics
What does a program mean?
What kind of algorithm does a program implement?

26

First Java Program

// Program to raise a number to the eighth power
public class Main {

public static void main(String[] args) {

// input
Out.print("Compute a^8 for a= ?");
int a;
a = In.readInt();
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e. a^8
Out.println(a + "^8 = " + b * b);

}
}

Method: named sequence
of statements.

Class: a program

27



Java Classes

A Java program comprises at least one class with main-method. The
sequence of statements in this method is executed when the program
starts.

public class Main{
// Potentiell weiterer Code und Daten

public static void main(String[] args) {
// Hier beginnt die Ausfuehrung
...

}

}

28

Behavior of a Program

At compile time:
program accepted by the compiler (syntactically correct)
Compiler error

During runtime:
correct result
incorrect result
program crashes
program does not terminate (endless loop)

29

Comments
// Program to raise a number to the eighth power
public class Main {

public static void main(String[] args) {
// input
Out.print("Compute a^8 for a= ?");
int a;
a = In.readInt();
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e. a^8
Out.println(a + "^8 = " + b * b);

}
}

Kommentare

30

Comments and Layout

Comments
are contained in every good program.
document what and how a program does something and how it should
be used,
are ignored by the compiler
Syntax: “double slash” // until the line ends.

The compiler ignores additionally
Empty lines, spaces,
Indendations that should re�ect the program logic

31



Comments and Layout

The compiler does not care...

public class Main{public static void main(String[] args){Out.print
("Compute a^8 for a= ?");int a;a = In.readInt();int b = a*a;b =
b * b;Out.println(a + "^8 = " + b * b);}}

... but we do!

32

Statements
// Program to raise a number to the eighth power
public class Main {

public static void main(String[] args) {
// input
Out.print("Compute a^8 for a= ?");
int a;
a = In.readInt();
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e. a^8
Out.println(a + "^8 = " + b * b);

}
}

Ausdrucksanweisungen

33

Statements

building blocks of a Java program
are executed (sequentially)
end with a semicolon
Any statement provide an e�ect (potentially)

34

Expression Statements

have the following form:
expr;

where expr is an expression
E�ect is the e�ect of expr, the value of expr is ignored.

b = b * b;

35



Statements – Values and E�ects
// Program to raise a number to the eighth power
public class Main {

public static void main(String[] args) {
// input
Out.print("Compute a^8 for a= ?");
int a;
a = In.readInt();
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e. a^8
Out.println(a + "^8 = " + b * b);

}
}

E�ekt: Ausgabe des Strings Compute ...

E�ekt: Eingabe einer Zahl und Speichern in a
E�ekt: Speichern des berechneten Wertes von a*a in b

E�ekt: Speichern des berechneten Wertes von b * b in b

E�ekt: Ausgabe des Wertes von a und des
berechneten Wertes von b * b

36

Values and E�ects

determine what a program does,
are purely semantical concepts:

Symbol 0 means Value 0 ∈ Z
a = In.readInt(); means e�ect "read in a number"

depend on the program state (memory content, inputs)

37

Variable De�nitions
// Program to raise a number to the eighth power
public class Main {

public static void main(String[] args) {
// input
Out.print("Compute a^8 for a= ?");
int a;
a = In.readInt();
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e. a^8
Out.println(a + "^8 = " + b * b);

}
}

Deklarationsanweisungen
Typ-
namen

38

Declaration Statements

introduce new names in the program,
consist of declaration and semicolon

int a;

can initialize variables

int b = a * a;

39



Types and Functionality

int:
Java integer type
corresponds to (Z, +,×) in math

In Java each type has a name and
a domain (e.g. integers)
functionality (e.g. addition/multiplication)

40

Fundamental Types

Java comprises fundamental types for
integers (int)
real numbers (float, double)
boolean values (boolean)
...

41

Literals

represent constant values
have a �xed type and value
are "syntactical values".

0 has type int, value 0.
1.2e5 has type double, value 1.2 · 105.

42

Variables

represent (varying) values,
have

name
type
value
address

are "visible" in the program
context.

int a; de�nes a variable with

name: a

type: int

value: (initially) unde�ned

Address: determined by
compiler

43



Objects

represent values in main memory
have type, address and value (memory content at the address)
can be named (variable) ...
... but also anonymous.

Remarks

A program has a �xed number of variables. In order to be able to deal with
a variable number of value, it requires "anonymous" addresses that can be
address via temporary names.

44

Identi�ers and Names

(Variable-)names are identi�ers
allowed: A,...,Z; a,...,z; 0,...,9;_
First symbol needs to be a character.

There are more names:
Out.println (Quali�ed identi�er)

45

Expressions

represent Computations
are either primary (b)
or composed (b * b). . .
. . . from di�erent expressions by operators

Analogy: building blocks

46

Expressions

// input
Out.print("Compute a^8 for a= ?");
int a;
a = In.readInt();

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e. a^8
Out.println(a + "^8 = " + b * b );

47



Expressions

represent computations
are primary or composite (by other expressions and operations)

a * a
composed of
variable name, operator symbol,variable name
variable name: primary expression

can be put into parantheses

a * a is equivalent to (a * a)

48

Expressions

have type, value und e�ect (potentially).

Example a * a

type: int (type of the operands)

Value: product of a and a

E�ect: none.

Example b = b * b

type: int (Typ der Operanden)

Value: product of b and b

e�ect: assignment of the product
value to b

The type of an expression is �xed but the value and e�ect are only
determined by the evaluation of the expression

49

Operators and Operands

// input
Out.print("Compute a^8 for a= ?");
int a;
a = In.readInt();

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e. a^8
Out.println(a + "^8 = " + b * b );

left operand (variable)
right operand (expression)

assignment operator

multiplication operator
50

Operators

Operators
make expressions (operands) into new composed expressions
specify the required and resulting types for the operands and the result
have an arity

51



Multiplication Operator *

expects to R-values of the same type as operands (arity 2)
"returns the product as value of the same type", that means formally:

The composite expression is value of the product of the value of the two
operands

Examples: a * a and b * b

52

Assignment Operator =

Assigns to the left operand the value of the right operand and returns
the left operand

Examples: b = b * b and a = b

Attention, Trap!
The operator = corresponds to the assignment operator of mathematics (:=), not
to the comparison operator (=).

53


